272 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZBDT03
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
 | 
						|
*                          RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            KD, LDU, LDVT, N
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * ), S( * )
 | 
						|
*       COMPLEX*16         U( LDU, * ), VT( LDVT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZBDT03 reconstructs a bidiagonal matrix B from its SVD:
 | 
						|
*>    S = U' * B * V
 | 
						|
*> where U and V are orthogonal matrices and S is diagonal.
 | 
						|
*>
 | 
						|
*> The test ratio to test the singular value decomposition is
 | 
						|
*>    RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS )
 | 
						|
*> where VT = V' and EPS is the machine precision.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix B is upper or lower bidiagonal.
 | 
						|
*>          = 'U':  Upper bidiagonal
 | 
						|
*>          = 'L':  Lower bidiagonal
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KD
 | 
						|
*> \verbatim
 | 
						|
*>          KD is INTEGER
 | 
						|
*>          The bandwidth of the bidiagonal matrix B.  If KD = 1, the
 | 
						|
*>          matrix B is bidiagonal, and if KD = 0, B is diagonal and E is
 | 
						|
*>          not referenced.  If KD is greater than 1, it is assumed to be
 | 
						|
*>          1, and if KD is less than 0, it is assumed to be 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The n diagonal elements of the bidiagonal matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) superdiagonal elements of the bidiagonal matrix B
 | 
						|
*>          if UPLO = 'U', or the (n-1) subdiagonal elements of B if
 | 
						|
*>          UPLO = 'L'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX*16 array, dimension (LDU,N)
 | 
						|
*>          The n by n orthogonal matrix U in the reduction B = U'*A*P.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U.  LDU >= max(1,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The singular values from the SVD of B, sorted in decreasing
 | 
						|
*>          order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VT
 | 
						|
*> \verbatim
 | 
						|
*>          VT is COMPLEX*16 array, dimension (LDVT,N)
 | 
						|
*>          The n by n orthogonal matrix V' in the reduction
 | 
						|
*>          B = U * S * V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVT
 | 
						|
*> \verbatim
 | 
						|
*>          LDVT is INTEGER
 | 
						|
*>          The leading dimension of the array VT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          The test ratio:  norm(B - U * S * V') / ( n * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            KD, LDU, LDVT, N
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), E( * ), S( * )
 | 
						|
      COMPLEX*16         U( LDU, * ), VT( LDVT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* ======================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   BNORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH, DZASUM
 | 
						|
      EXTERNAL           LSAME, IDAMAX, DLAMCH, DZASUM
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZGEMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Compute B - U * S * V' one column at a time.
 | 
						|
*
 | 
						|
      BNORM = ZERO
 | 
						|
      IF( KD.GE.1 ) THEN
 | 
						|
*
 | 
						|
*        B is bidiagonal.
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*           B is upper bidiagonal.
 | 
						|
*
 | 
						|
            DO 20 J = 1, N
 | 
						|
               DO 10 I = 1, N
 | 
						|
                  WORK( N+I ) = S( I )*VT( I, J )
 | 
						|
   10          CONTINUE
 | 
						|
               CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
 | 
						|
     $                     WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
 | 
						|
               WORK( J ) = WORK( J ) + D( J )
 | 
						|
               IF( J.GT.1 ) THEN
 | 
						|
                  WORK( J-1 ) = WORK( J-1 ) + E( J-1 )
 | 
						|
                  BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) )
 | 
						|
               ELSE
 | 
						|
                  BNORM = MAX( BNORM, ABS( D( J ) ) )
 | 
						|
               END IF
 | 
						|
               RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           B is lower bidiagonal.
 | 
						|
*
 | 
						|
            DO 40 J = 1, N
 | 
						|
               DO 30 I = 1, N
 | 
						|
                  WORK( N+I ) = S( I )*VT( I, J )
 | 
						|
   30          CONTINUE
 | 
						|
               CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
 | 
						|
     $                     WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
 | 
						|
               WORK( J ) = WORK( J ) + D( J )
 | 
						|
               IF( J.LT.N ) THEN
 | 
						|
                  WORK( J+1 ) = WORK( J+1 ) + E( J )
 | 
						|
                  BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) )
 | 
						|
               ELSE
 | 
						|
                  BNORM = MAX( BNORM, ABS( D( J ) ) )
 | 
						|
               END IF
 | 
						|
               RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        B is diagonal.
 | 
						|
*
 | 
						|
         DO 60 J = 1, N
 | 
						|
            DO 50 I = 1, N
 | 
						|
               WORK( N+I ) = S( I )*VT( I, J )
 | 
						|
   50       CONTINUE
 | 
						|
            CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
 | 
						|
     $                  WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
 | 
						|
            WORK( J ) = WORK( J ) + D( J )
 | 
						|
            RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
 | 
						|
   60    CONTINUE
 | 
						|
         J = IDAMAX( N, D, 1 )
 | 
						|
         BNORM = ABS( D( J ) )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm(B - U * S * V') / ( n * norm(B) * EPS )
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Precision' )
 | 
						|
*
 | 
						|
      IF( BNORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         IF( BNORM.GE.RESID ) THEN
 | 
						|
            RESID = ( RESID / BNORM ) / ( DBLE( N )*EPS )
 | 
						|
         ELSE
 | 
						|
            IF( BNORM.LT.ONE ) THEN
 | 
						|
               RESID = ( MIN( RESID, DBLE( N )*BNORM ) / BNORM ) /
 | 
						|
     $                 ( DBLE( N )*EPS )
 | 
						|
            ELSE
 | 
						|
               RESID = MIN( RESID / BNORM, DBLE( N ) ) /
 | 
						|
     $                 ( DBLE( N )*EPS )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZBDT03
 | 
						|
*
 | 
						|
      END
 |