233 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGLMTS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
 | 
						|
*                          X, U, WORK, LWORK, RWORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDB, LWORK, M, P, N
 | 
						|
*       REAL               RESULT
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), AF( LDA, * ), B( LDB, * ),
 | 
						|
*      $                   BF( LDB, * ), RWORK( * ), D( * ), DF( * ),
 | 
						|
*      $                   U( * ), WORK( LWORK ), X( * )
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGLMTS tests SGGGLM - a subroutine for solving the generalized
 | 
						|
*> linear model problem.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is INTEGER
 | 
						|
*>          The number of columns of the matrix B.  P >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,M)
 | 
						|
*>          The N-by-M matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is REAL array, dimension (LDA,M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the arrays A, AF. LDA >= max(M,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,P)
 | 
						|
*>          The N-by-P matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BF
 | 
						|
*> \verbatim
 | 
						|
*>          BF is REAL array, dimension (LDB,P)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the arrays B, BF. LDB >= max(P,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension( N )
 | 
						|
*>          On input, the left hand side of the GLM.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DF
 | 
						|
*> \verbatim
 | 
						|
*>          DF is REAL array, dimension( N )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension( M )
 | 
						|
*>          solution vector X in the GLM problem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is REAL array, dimension( P )
 | 
						|
*>          solution vector U in the GLM problem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL
 | 
						|
*>          The test ratio:
 | 
						|
*>                           norm( d - A*x - B*u )
 | 
						|
*>            RESULT = -----------------------------------------
 | 
						|
*>                     (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
 | 
						|
     $                   X, U, WORK, LWORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDB, LWORK, M, P, N
 | 
						|
      REAL               RESULT
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), AF( LDA, * ), B( LDB, * ),
 | 
						|
     $                   BF( LDB, * ), RWORK( * ), D( * ), DF( * ),
 | 
						|
     $                   U( * ), WORK( LWORK ), X( * )
 | 
						|
*
 | 
						|
*  ====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            INFO
 | 
						|
      REAL               ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SASUM, SLAMCH, SLANGE
 | 
						|
      EXTERNAL           SASUM, SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLACPY
 | 
						|
*
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
 | 
						|
      BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
 | 
						|
*
 | 
						|
*     Copy the matrices A and B to the arrays AF and BF,
 | 
						|
*     and the vector D the array DF.
 | 
						|
*
 | 
						|
      CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA )
 | 
						|
      CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB )
 | 
						|
      CALL SCOPY( N, D, 1, DF, 1 )
 | 
						|
*
 | 
						|
*     Solve GLM problem
 | 
						|
*
 | 
						|
      CALL SGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
 | 
						|
     $             INFO )
 | 
						|
*
 | 
						|
*     Test the residual for the solution of LSE
 | 
						|
*
 | 
						|
*                       norm( d - A*x - B*u )
 | 
						|
*       RESULT = -----------------------------------------
 | 
						|
*                (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
 | 
						|
*
 | 
						|
      CALL SCOPY( N, D, 1, DF, 1 )
 | 
						|
      CALL SGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1,
 | 
						|
     $             ONE, DF, 1 )
 | 
						|
*
 | 
						|
      CALL SGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1,
 | 
						|
     $             ONE, DF, 1 )
 | 
						|
*
 | 
						|
      DNORM = SASUM( N, DF, 1 )
 | 
						|
      XNORM = SASUM( M, X, 1 ) + SASUM( P, U, 1 )
 | 
						|
      YNORM = ANORM + BNORM
 | 
						|
*
 | 
						|
      IF( XNORM.LE.ZERO ) THEN
 | 
						|
         RESULT = ZERO
 | 
						|
      ELSE
 | 
						|
         RESULT =  ( ( DNORM / YNORM ) / XNORM ) /EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGLMTS
 | 
						|
*
 | 
						|
      END
 |