245 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> ZGTSV computes the solution to system of linear equations A * X = B for GT matrices <b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGTSV + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtsv.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtsv.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtsv.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGTSV  solves the equation
 | 
						|
*>
 | 
						|
*>    A*X = B,
 | 
						|
*>
 | 
						|
*> where A is an N-by-N tridiagonal matrix, by Gaussian elimination with
 | 
						|
*> partial pivoting.
 | 
						|
*>
 | 
						|
*> Note that the equation  A**T *X = B  may be solved by interchanging the
 | 
						|
*> order of the arguments DU and DL.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DL
 | 
						|
*> \verbatim
 | 
						|
*>          DL is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          On entry, DL must contain the (n-1) subdiagonal elements of
 | 
						|
*>          A.
 | 
						|
*>          On exit, DL is overwritten by the (n-2) elements of the
 | 
						|
*>          second superdiagonal of the upper triangular matrix U from
 | 
						|
*>          the LU factorization of A, in DL(1), ..., DL(n-2).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is COMPLEX*16 array, dimension (N)
 | 
						|
*>          On entry, D must contain the diagonal elements of A.
 | 
						|
*>          On exit, D is overwritten by the n diagonal elements of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DU
 | 
						|
*> \verbatim
 | 
						|
*>          DU is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          On entry, DU must contain the (n-1) superdiagonal elements
 | 
						|
*>          of A.
 | 
						|
*>          On exit, DU is overwritten by the (n-1) elements of the first
 | 
						|
*>          superdiagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the N-by-NRHS right hand side matrix B.
 | 
						|
*>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, U(i,i) is exactly zero, and the solution
 | 
						|
*>                has not been computed.  The factorization has not been
 | 
						|
*>                completed unless i = N.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16GTsolve
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ZERO
 | 
						|
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J, K
 | 
						|
      COMPLEX*16         MULT, TEMP, ZDUM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DIMAG, MAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGTSV ', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      DO 30 K = 1, N - 1
 | 
						|
         IF( DL( K ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Subdiagonal is zero, no elimination is required.
 | 
						|
*
 | 
						|
            IF( D( K ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*              Diagonal is zero: set INFO = K and return; a unique
 | 
						|
*              solution can not be found.
 | 
						|
*
 | 
						|
               INFO = K
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
         ELSE IF( CABS1( D( K ) ).GE.CABS1( DL( K ) ) ) THEN
 | 
						|
*
 | 
						|
*           No row interchange required
 | 
						|
*
 | 
						|
            MULT = DL( K ) / D( K )
 | 
						|
            D( K+1 ) = D( K+1 ) - MULT*DU( K )
 | 
						|
            DO 10 J = 1, NRHS
 | 
						|
               B( K+1, J ) = B( K+1, J ) - MULT*B( K, J )
 | 
						|
   10       CONTINUE
 | 
						|
            IF( K.LT.( N-1 ) )
 | 
						|
     $         DL( K ) = ZERO
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Interchange rows K and K+1
 | 
						|
*
 | 
						|
            MULT = D( K ) / DL( K )
 | 
						|
            D( K ) = DL( K )
 | 
						|
            TEMP = D( K+1 )
 | 
						|
            D( K+1 ) = DU( K ) - MULT*TEMP
 | 
						|
            IF( K.LT.( N-1 ) ) THEN
 | 
						|
               DL( K ) = DU( K+1 )
 | 
						|
               DU( K+1 ) = -MULT*DL( K )
 | 
						|
            END IF
 | 
						|
            DU( K ) = TEMP
 | 
						|
            DO 20 J = 1, NRHS
 | 
						|
               TEMP = B( K, J )
 | 
						|
               B( K, J ) = B( K+1, J )
 | 
						|
               B( K+1, J ) = TEMP - MULT*B( K+1, J )
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
   30 CONTINUE
 | 
						|
      IF( D( N ).EQ.ZERO ) THEN
 | 
						|
         INFO = N
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Back solve with the matrix U from the factorization.
 | 
						|
*
 | 
						|
      DO 50 J = 1, NRHS
 | 
						|
         B( N, J ) = B( N, J ) / D( N )
 | 
						|
         IF( N.GT.1 )
 | 
						|
     $      B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
 | 
						|
         DO 40 K = N - 2, 1, -1
 | 
						|
            B( K, J ) = ( B( K, J )-DU( K )*B( K+1, J )-DL( K )*
 | 
						|
     $                  B( K+2, J ) ) / D( K )
 | 
						|
   40    CONTINUE
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGTSV
 | 
						|
*
 | 
						|
      END
 |