630 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			630 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGELSD + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 | 
						|
*                          WORK, LWORK, IWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | 
						|
*       DOUBLE PRECISION   RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGELSD computes the minimum-norm solution to a real linear least
 | 
						|
*> squares problem:
 | 
						|
*>     minimize 2-norm(| b - A*x |)
 | 
						|
*> using the singular value decomposition (SVD) of A. A is an M-by-N
 | 
						|
*> matrix which may be rank-deficient.
 | 
						|
*>
 | 
						|
*> Several right hand side vectors b and solution vectors x can be
 | 
						|
*> handled in a single call; they are stored as the columns of the
 | 
						|
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | 
						|
*> matrix X.
 | 
						|
*>
 | 
						|
*> The problem is solved in three steps:
 | 
						|
*> (1) Reduce the coefficient matrix A to bidiagonal form with
 | 
						|
*>     Householder transformations, reducing the original problem
 | 
						|
*>     into a "bidiagonal least squares problem" (BLS)
 | 
						|
*> (2) Solve the BLS using a divide and conquer approach.
 | 
						|
*> (3) Apply back all the Householder tranformations to solve
 | 
						|
*>     the original least squares problem.
 | 
						|
*>
 | 
						|
*> The effective rank of A is determined by treating as zero those
 | 
						|
*> singular values which are less than RCOND times the largest singular
 | 
						|
*> value.
 | 
						|
*>
 | 
						|
*> The divide and conquer algorithm makes very mild assumptions about
 | 
						|
*> floating point arithmetic. It will work on machines with a guard
 | 
						|
*> digit in add/subtract, or on those binary machines without guard
 | 
						|
*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 | 
						|
*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
 | 
						|
*> without guard digits, but we know of none.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of A. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrices B and X. NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, A has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the M-by-NRHS right hand side matrix B.
 | 
						|
*>          On exit, B is overwritten by the N-by-NRHS solution
 | 
						|
*>          matrix X.  If m >= n and RANK = n, the residual
 | 
						|
*>          sum-of-squares for the solution in the i-th column is given
 | 
						|
*>          by the sum of squares of elements n+1:m in that column.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (min(M,N))
 | 
						|
*>          The singular values of A in decreasing order.
 | 
						|
*>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          RCOND is used to determine the effective rank of A.
 | 
						|
*>          Singular values S(i) <= RCOND*S(1) are treated as zero.
 | 
						|
*>          If RCOND < 0, machine precision is used instead.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>          The effective rank of A, i.e., the number of singular values
 | 
						|
*>          which are greater than RCOND*S(1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK must be at least 1.
 | 
						|
*>          The exact minimum amount of workspace needed depends on M,
 | 
						|
*>          N and NRHS. As long as LWORK is at least
 | 
						|
*>              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
 | 
						|
*>          if M is greater than or equal to N or
 | 
						|
*>              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
 | 
						|
*>          if M is less than N, the code will execute correctly.
 | 
						|
*>          SMLSIZ is returned by ILAENV and is equal to the maximum
 | 
						|
*>          size of the subproblems at the bottom of the computation
 | 
						|
*>          tree (usually about 25), and
 | 
						|
*>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
 | 
						|
*>          For good performance, LWORK should generally be larger.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
 | 
						|
*>          where MINMN = MIN( M,N ).
 | 
						|
*>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  the algorithm for computing the SVD failed to converge;
 | 
						|
*>                if INFO = i, i off-diagonal elements of an intermediate
 | 
						|
*>                bidiagonal form did not converge to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup doubleGEsolve
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | 
						|
*>       California at Berkeley, USA \n
 | 
						|
*>     Osni Marques, LBNL/NERSC, USA \n
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 | 
						|
     $                   WORK, LWORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | 
						|
      DOUBLE PRECISION   RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
 | 
						|
     $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
 | 
						|
     $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
 | 
						|
      DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
 | 
						|
     $                   DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE
 | 
						|
      EXTERNAL           ILAENV, DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, INT, LOG, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      MINMN = MIN( M, N )
 | 
						|
      MAXMN = MAX( M, N )
 | 
						|
      MNTHR = ILAENV( 6, 'DGELSD', ' ', M, N, NRHS, -1 )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      SMLSIZ = ILAENV( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
 | 
						|
*
 | 
						|
*     Compute workspace.
 | 
						|
*     (Note: Comments in the code beginning "Workspace:" describe the
 | 
						|
*     minimal amount of workspace needed at that point in the code,
 | 
						|
*     as well as the preferred amount for good performance.
 | 
						|
*     NB refers to the optimal block size for the immediately
 | 
						|
*     following subroutine, as returned by ILAENV.)
 | 
						|
*
 | 
						|
      MINWRK = 1
 | 
						|
      LIWORK = 1
 | 
						|
      MINMN = MAX( 1, MINMN )
 | 
						|
      NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
 | 
						|
     $       LOG( TWO ) ) + 1, 0 )
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         MAXWRK = 0
 | 
						|
         LIWORK = 3*MINMN*NLVL + 11*MINMN
 | 
						|
         MM = M
 | 
						|
         IF( M.GE.N .AND. M.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*           Path 1a - overdetermined, with many more rows than columns.
 | 
						|
*
 | 
						|
            MM = N
 | 
						|
            MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'DGEQRF', ' ', M, N,
 | 
						|
     $               -1, -1 ) )
 | 
						|
            MAXWRK = MAX( MAXWRK, N+NRHS*
 | 
						|
     $               ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, -1 ) )
 | 
						|
         END IF
 | 
						|
         IF( M.GE.N ) THEN
 | 
						|
*
 | 
						|
*           Path 1 - overdetermined or exactly determined.
 | 
						|
*
 | 
						|
            MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
 | 
						|
     $               ILAENV( 1, 'DGEBRD', ' ', MM, N, -1, -1 ) )
 | 
						|
            MAXWRK = MAX( MAXWRK, 3*N+NRHS*
 | 
						|
     $               ILAENV( 1, 'DORMBR', 'QLT', MM, NRHS, N, -1 ) )
 | 
						|
            MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
 | 
						|
     $               ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, N, -1 ) )
 | 
						|
            WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
 | 
						|
            MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
 | 
						|
            MINWRK = MAX( 3*N+MM, 3*N+NRHS, 3*N+WLALSD )
 | 
						|
         END IF
 | 
						|
         IF( N.GT.M ) THEN
 | 
						|
            WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
 | 
						|
            IF( N.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*              Path 2a - underdetermined, with many more columns
 | 
						|
*              than rows.
 | 
						|
*
 | 
						|
               MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
 | 
						|
               MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
 | 
						|
     $                  ILAENV( 1, 'DGEBRD', ' ', M, M, -1, -1 ) )
 | 
						|
               MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
 | 
						|
     $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
 | 
						|
               MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
 | 
						|
     $                  ILAENV( 1, 'DORMBR', 'PLN', M, NRHS, M, -1 ) )
 | 
						|
               IF( NRHS.GT.1 ) THEN
 | 
						|
                  MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
 | 
						|
               ELSE
 | 
						|
                  MAXWRK = MAX( MAXWRK, M*M+2*M )
 | 
						|
               END IF
 | 
						|
               MAXWRK = MAX( MAXWRK, M+NRHS*
 | 
						|
     $                  ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, -1 ) )
 | 
						|
               MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
 | 
						|
!     XXX: Ensure the Path 2a case below is triggered.  The workspace
 | 
						|
!     calculation should use queries for all routines eventually.
 | 
						|
               MAXWRK = MAX( MAXWRK,
 | 
						|
     $              4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Path 2 - remaining underdetermined cases.
 | 
						|
*
 | 
						|
               MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'DGEBRD', ' ', M, N,
 | 
						|
     $                  -1, -1 )
 | 
						|
               MAXWRK = MAX( MAXWRK, 3*M+NRHS*
 | 
						|
     $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, N, -1 ) )
 | 
						|
               MAXWRK = MAX( MAXWRK, 3*M+M*
 | 
						|
     $                  ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, M, -1 ) )
 | 
						|
               MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
 | 
						|
            END IF
 | 
						|
            MINWRK = MAX( 3*M+NRHS, 3*M+M, 3*M+WLALSD )
 | 
						|
         END IF
 | 
						|
         MINWRK = MIN( MINWRK, MAXWRK )
 | 
						|
         WORK( 1 ) = MAXWRK
 | 
						|
         IWORK( 1 ) = LIWORK
 | 
						|
 | 
						|
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -12
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGELSD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | 
						|
         RANK = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine parameters.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
      SFMIN = DLAMCH( 'S' )
 | 
						|
      SMLNUM = SFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL DLABAD( SMLNUM, BIGNUM )
 | 
						|
*
 | 
						|
*     Scale A if max entry outside range [SMLNUM,BIGNUM].
 | 
						|
*
 | 
						|
      ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
 | 
						|
      IASCL = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM.
 | 
						|
*
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 1
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM.
 | 
						|
*
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 2
 | 
						|
      ELSE IF( ANRM.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Matrix all zero. Return zero solution.
 | 
						|
*
 | 
						|
         CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | 
						|
         CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
 | 
						|
         RANK = 0
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale B if max entry outside range [SMLNUM,BIGNUM].
 | 
						|
*
 | 
						|
      BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
 | 
						|
      IBSCL = 0
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM.
 | 
						|
*
 | 
						|
         CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 1
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM.
 | 
						|
*
 | 
						|
         CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If M < N make sure certain entries of B are zero.
 | 
						|
*
 | 
						|
      IF( M.LT.N )
 | 
						|
     $   CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
 | 
						|
*
 | 
						|
*     Overdetermined case.
 | 
						|
*
 | 
						|
      IF( M.GE.N ) THEN
 | 
						|
*
 | 
						|
*        Path 1 - overdetermined or exactly determined.
 | 
						|
*
 | 
						|
         MM = M
 | 
						|
         IF( M.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*           Path 1a - overdetermined, with many more rows than columns.
 | 
						|
*
 | 
						|
            MM = N
 | 
						|
            ITAU = 1
 | 
						|
            NWORK = ITAU + N
 | 
						|
*
 | 
						|
*           Compute A=Q*R.
 | 
						|
*           (Workspace: need 2*N, prefer N+N*NB)
 | 
						|
*
 | 
						|
            CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | 
						|
     $                   LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
*           Multiply B by transpose(Q).
 | 
						|
*           (Workspace: need N+NRHS, prefer N+NRHS*NB)
 | 
						|
*
 | 
						|
            CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
 | 
						|
     $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
*           Zero out below R.
 | 
						|
*
 | 
						|
            IF( N.GT.1 ) THEN
 | 
						|
               CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IE = 1
 | 
						|
         ITAUQ = IE + N
 | 
						|
         ITAUP = ITAUQ + N
 | 
						|
         NWORK = ITAUP + N
 | 
						|
*
 | 
						|
*        Bidiagonalize R in A.
 | 
						|
*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
 | 
						|
*
 | 
						|
         CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | 
						|
     $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | 
						|
     $                INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors of R.
 | 
						|
*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
 | 
						|
*
 | 
						|
         CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
 | 
						|
     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Solve the bidiagonal least squares problem.
 | 
						|
*
 | 
						|
         CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
 | 
						|
     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
 | 
						|
         IF( INFO.NE.0 ) THEN
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Multiply B by right bidiagonalizing vectors of R.
 | 
						|
*
 | 
						|
         CALL DORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
 | 
						|
     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
      ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
 | 
						|
     $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
 | 
						|
*
 | 
						|
*        Path 2a - underdetermined, with many more columns than rows
 | 
						|
*        and sufficient workspace for an efficient algorithm.
 | 
						|
*
 | 
						|
         LDWORK = M
 | 
						|
         IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
 | 
						|
     $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
 | 
						|
         ITAU = 1
 | 
						|
         NWORK = M + 1
 | 
						|
*
 | 
						|
*        Compute A=L*Q.
 | 
						|
*        (Workspace: need 2*M, prefer M+M*NB)
 | 
						|
*
 | 
						|
         CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | 
						|
     $                LWORK-NWORK+1, INFO )
 | 
						|
         IL = NWORK
 | 
						|
*
 | 
						|
*        Copy L to WORK(IL), zeroing out above its diagonal.
 | 
						|
*
 | 
						|
         CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
 | 
						|
         CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
 | 
						|
     $                LDWORK )
 | 
						|
         IE = IL + LDWORK*M
 | 
						|
         ITAUQ = IE + M
 | 
						|
         ITAUP = ITAUQ + M
 | 
						|
         NWORK = ITAUP + M
 | 
						|
*
 | 
						|
*        Bidiagonalize L in WORK(IL).
 | 
						|
*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
 | 
						|
*
 | 
						|
         CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
 | 
						|
     $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
 | 
						|
     $                LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors of L.
 | 
						|
*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
 | 
						|
*
 | 
						|
         CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
 | 
						|
     $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
 | 
						|
     $                LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Solve the bidiagonal least squares problem.
 | 
						|
*
 | 
						|
         CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
 | 
						|
     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
 | 
						|
         IF( INFO.NE.0 ) THEN
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Multiply B by right bidiagonalizing vectors of L.
 | 
						|
*
 | 
						|
         CALL DORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
 | 
						|
     $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
 | 
						|
     $                LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Zero out below first M rows of B.
 | 
						|
*
 | 
						|
         CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
 | 
						|
         NWORK = ITAU + M
 | 
						|
*
 | 
						|
*        Multiply transpose(Q) by B.
 | 
						|
*        (Workspace: need M+NRHS, prefer M+NRHS*NB)
 | 
						|
*
 | 
						|
         CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
 | 
						|
     $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Path 2 - remaining underdetermined cases.
 | 
						|
*
 | 
						|
         IE = 1
 | 
						|
         ITAUQ = IE + M
 | 
						|
         ITAUP = ITAUQ + M
 | 
						|
         NWORK = ITAUP + M
 | 
						|
*
 | 
						|
*        Bidiagonalize A.
 | 
						|
*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
 | 
						|
*
 | 
						|
         CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | 
						|
     $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | 
						|
     $                INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors.
 | 
						|
*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
 | 
						|
*
 | 
						|
         CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
 | 
						|
     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Solve the bidiagonal least squares problem.
 | 
						|
*
 | 
						|
         CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
 | 
						|
     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
 | 
						|
         IF( INFO.NE.0 ) THEN
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Multiply B by right bidiagonalizing vectors of A.
 | 
						|
*
 | 
						|
         CALL DORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
 | 
						|
     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling.
 | 
						|
*
 | 
						|
      IF( IASCL.EQ.1 ) THEN
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
 | 
						|
     $                INFO )
 | 
						|
      ELSE IF( IASCL.EQ.2 ) THEN
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
 | 
						|
     $                INFO )
 | 
						|
      END IF
 | 
						|
      IF( IBSCL.EQ.1 ) THEN
 | 
						|
         CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      ELSE IF( IBSCL.EQ.2 ) THEN
 | 
						|
         CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      WORK( 1 ) = MAXWRK
 | 
						|
      IWORK( 1 ) = LIWORK
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGELSD
 | 
						|
*
 | 
						|
      END
 |