242 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CTZRQF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CTZRQF + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctzrqf.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctzrqf.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctzrqf.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), TAU( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> This routine is deprecated and has been replaced by routine CTZRZF.
 | 
						|
*>
 | 
						|
*> CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
 | 
						|
*> to upper triangular form by means of unitary transformations.
 | 
						|
*>
 | 
						|
*> The upper trapezoidal matrix A is factored as
 | 
						|
*>
 | 
						|
*>    A = ( R  0 ) * Z,
 | 
						|
*>
 | 
						|
*> where Z is an N-by-N unitary matrix and R is an M-by-M upper
 | 
						|
*> triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the leading M-by-N upper trapezoidal part of the
 | 
						|
*>          array A must contain the matrix to be factorized.
 | 
						|
*>          On exit, the leading M-by-M upper triangular part of A
 | 
						|
*>          contains the upper triangular matrix R, and elements M+1 to
 | 
						|
*>          N of the first M rows of A, with the array TAU, represent the
 | 
						|
*>          unitary matrix Z as a product of M elementary reflectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX array, dimension (M)
 | 
						|
*>          The scalar factors of the elementary reflectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The  factorization is obtained by Householder's method.  The kth
 | 
						|
*>  transformation matrix, Z( k ), whose conjugate transpose is used to
 | 
						|
*>  introduce zeros into the (m - k + 1)th row of A, is given in the form
 | 
						|
*>
 | 
						|
*>     Z( k ) = ( I     0   ),
 | 
						|
*>              ( 0  T( k ) )
 | 
						|
*>
 | 
						|
*>  where
 | 
						|
*>
 | 
						|
*>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
 | 
						|
*>                                                   (   0    )
 | 
						|
*>                                                   ( z( k ) )
 | 
						|
*>
 | 
						|
*>  tau is a scalar and z( k ) is an ( n - m ) element vector.
 | 
						|
*>  tau and z( k ) are chosen to annihilate the elements of the kth row
 | 
						|
*>  of X.
 | 
						|
*>
 | 
						|
*>  The scalar tau is returned in the kth element of TAU and the vector
 | 
						|
*>  u( k ) in the kth row of A, such that the elements of z( k ) are
 | 
						|
*>  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
 | 
						|
*>  the upper triangular part of A.
 | 
						|
*>
 | 
						|
*>  Z is given by
 | 
						|
*>
 | 
						|
*>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), TAU( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            CONE, CZERO
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ),
 | 
						|
     $                   CZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, K, M1
 | 
						|
      COMPLEX            ALPHA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CAXPY, CCOPY, CGEMV, CGERC, CLACGV, CLARFG,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.M ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CTZRQF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Perform the factorization.
 | 
						|
*
 | 
						|
      IF( M.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
      IF( M.EQ.N ) THEN
 | 
						|
         DO 10 I = 1, N
 | 
						|
            TAU( I ) = CZERO
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         M1 = MIN( M+1, N )
 | 
						|
         DO 20 K = M, 1, -1
 | 
						|
*
 | 
						|
*           Use a Householder reflection to zero the kth row of A.
 | 
						|
*           First set up the reflection.
 | 
						|
*
 | 
						|
            A( K, K ) = CONJG( A( K, K ) )
 | 
						|
            CALL CLACGV( N-M, A( K, M1 ), LDA )
 | 
						|
            ALPHA = A( K, K )
 | 
						|
            CALL CLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
 | 
						|
            A( K, K ) = ALPHA
 | 
						|
            TAU( K ) = CONJG( TAU( K ) )
 | 
						|
*
 | 
						|
            IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
 | 
						|
*
 | 
						|
*              We now perform the operation  A := A*P( k )**H.
 | 
						|
*
 | 
						|
*              Use the first ( k - 1 ) elements of TAU to store  a( k ),
 | 
						|
*              where  a( k ) consists of the first ( k - 1 ) elements of
 | 
						|
*              the  kth column  of  A.  Also  let  B  denote  the  first
 | 
						|
*              ( k - 1 ) rows of the last ( n - m ) columns of A.
 | 
						|
*
 | 
						|
               CALL CCOPY( K-1, A( 1, K ), 1, TAU, 1 )
 | 
						|
*
 | 
						|
*              Form   w = a( k ) + B*z( k )  in TAU.
 | 
						|
*
 | 
						|
               CALL CGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
 | 
						|
     $                     LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
 | 
						|
*
 | 
						|
*              Now form  a( k ) := a( k ) - conjg(tau)*w
 | 
						|
*              and       B      := B      - conjg(tau)*w*z( k )**H.
 | 
						|
*
 | 
						|
               CALL CAXPY( K-1, -CONJG( TAU( K ) ), TAU, 1, A( 1, K ),
 | 
						|
     $                     1 )
 | 
						|
               CALL CGERC( K-1, N-M, -CONJG( TAU( K ) ), TAU, 1,
 | 
						|
     $                     A( K, M1 ), LDA, A( 1, M1 ), LDA )
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CTZRQF
 | 
						|
*
 | 
						|
      END
 |