714 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			714 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DCHKBB
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
 | |
| *                          NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
 | |
| *                          BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
 | |
| *                          LWORK, RESULT, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
 | |
| *      $                   NRHS, NSIZES, NTYPES, NWDTHS
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), AB( LDAB, * ), BD( * ), BE( * ),
 | |
| *      $                   C( LDC, * ), CC( LDC, * ), P( LDP, * ),
 | |
| *      $                   Q( LDQ, * ), RESULT( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DCHKBB tests the reduction of a general real rectangular band
 | |
| *> matrix to bidiagonal form.
 | |
| *>
 | |
| *> DGBBRD factors a general band matrix A as  Q B P* , where * means
 | |
| *> transpose, B is upper bidiagonal, and Q and P are orthogonal;
 | |
| *> DGBBRD can also overwrite a given matrix C with Q* C .
 | |
| *>
 | |
| *> For each pair of matrix dimensions (M,N) and each selected matrix
 | |
| *> type, an M by N matrix A and an M by NRHS matrix C are generated.
 | |
| *> The problem dimensions are as follows
 | |
| *>    A:          M x N
 | |
| *>    Q:          M x M
 | |
| *>    P:          N x N
 | |
| *>    B:          min(M,N) x min(M,N)
 | |
| *>    C:          M x NRHS
 | |
| *>
 | |
| *> For each generated matrix, 4 tests are performed:
 | |
| *>
 | |
| *> (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
 | |
| *>
 | |
| *> (2)   | I - Q' Q | / ( M ulp )
 | |
| *>
 | |
| *> (3)   | I - PT PT' | / ( N ulp )
 | |
| *>
 | |
| *> (4)   | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C.
 | |
| *>
 | |
| *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | |
| *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *> Currently, the list of possible types is:
 | |
| *>
 | |
| *> The possible matrix types are
 | |
| *>
 | |
| *> (1)  The zero matrix.
 | |
| *> (2)  The identity matrix.
 | |
| *>
 | |
| *> (3)  A diagonal matrix with evenly spaced entries
 | |
| *>      1, ..., ULP  and random signs.
 | |
| *>      (ULP = (first number larger than 1) - 1 )
 | |
| *> (4)  A diagonal matrix with geometrically spaced entries
 | |
| *>      1, ..., ULP  and random signs.
 | |
| *> (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | |
| *>      and random signs.
 | |
| *>
 | |
| *> (6)  Same as (3), but multiplied by SQRT( overflow threshold )
 | |
| *> (7)  Same as (3), but multiplied by SQRT( underflow threshold )
 | |
| *>
 | |
| *> (8)  A matrix of the form  U D V, where U and V are orthogonal and
 | |
| *>      D has evenly spaced entries 1, ..., ULP with random signs
 | |
| *>      on the diagonal.
 | |
| *>
 | |
| *> (9)  A matrix of the form  U D V, where U and V are orthogonal and
 | |
| *>      D has geometrically spaced entries 1, ..., ULP with random
 | |
| *>      signs on the diagonal.
 | |
| *>
 | |
| *> (10) A matrix of the form  U D V, where U and V are orthogonal and
 | |
| *>      D has "clustered" entries 1, ULP,..., ULP with random
 | |
| *>      signs on the diagonal.
 | |
| *>
 | |
| *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
 | |
| *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
 | |
| *>
 | |
| *> (13) Rectangular matrix with random entries chosen from (-1,1).
 | |
| *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
 | |
| *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NSIZES
 | |
| *> \verbatim
 | |
| *>          NSIZES is INTEGER
 | |
| *>          The number of values of M and N contained in the vectors
 | |
| *>          MVAL and NVAL.  The matrix sizes are used in pairs (M,N).
 | |
| *>          If NSIZES is zero, DCHKBB does nothing.  NSIZES must be at
 | |
| *>          least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MVAL
 | |
| *> \verbatim
 | |
| *>          MVAL is INTEGER array, dimension (NSIZES)
 | |
| *>          The values of the matrix row dimension M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NVAL
 | |
| *> \verbatim
 | |
| *>          NVAL is INTEGER array, dimension (NSIZES)
 | |
| *>          The values of the matrix column dimension N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NWDTHS
 | |
| *> \verbatim
 | |
| *>          NWDTHS is INTEGER
 | |
| *>          The number of bandwidths to use.  If it is zero,
 | |
| *>          DCHKBB does nothing.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KK
 | |
| *> \verbatim
 | |
| *>          KK is INTEGER array, dimension (NWDTHS)
 | |
| *>          An array containing the bandwidths to be used for the band
 | |
| *>          matrices.  The values must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NTYPES
 | |
| *> \verbatim
 | |
| *>          NTYPES is INTEGER
 | |
| *>          The number of elements in DOTYPE.   If it is zero, DCHKBB
 | |
| *>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | |
| *>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | |
| *>          defined, which is to use whatever matrix is in A.  This
 | |
| *>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | |
| *>          DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>          matrix of that size and of type j will be generated.
 | |
| *>          If NTYPES is smaller than the maximum number of types
 | |
| *>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>          MAXTYP will not be generated.  If NTYPES is larger
 | |
| *>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>          will be ignored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of columns in the "right-hand side" matrix C.
 | |
| *>          If NRHS = 0, then the operations on the right-hand side will
 | |
| *>          not be tested. NRHS must be at least 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator. The array elements should be between 0 and 4095;
 | |
| *>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>          be odd.  The random number generator uses a linear
 | |
| *>          congruential sequence limited to small integers, and so
 | |
| *>          should produce machine independent random numbers. The
 | |
| *>          values of ISEED are changed on exit, and can be used in the
 | |
| *>          next call to DCHKBB to continue the same random number
 | |
| *>          sequence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          A test will count as "failed" if the "error", computed as
 | |
| *>          described above, exceeds THRESH.  Note that the error
 | |
| *>          is scaled to be O(1), so THRESH should be a reasonably
 | |
| *>          small multiple of 1, e.g., 10 or 100.  In particular,
 | |
| *>          it should not depend on the precision (single vs. double)
 | |
| *>          or the size of the matrix.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUNIT
 | |
| *> \verbatim
 | |
| *>          NOUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for printing out error messages
 | |
| *>          (e.g., if a routine returns IINFO not equal to 0.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension
 | |
| *>                            (LDA, max(NN))
 | |
| *>          Used to hold the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  It must be at least 1
 | |
| *>          and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AB
 | |
| *> \verbatim
 | |
| *>          AB is DOUBLE PRECISION array, dimension (LDAB, max(NN))
 | |
| *>          Used to hold A in band storage format.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of AB.  It must be at least 2 (not 1!)
 | |
| *>          and at least max( KK )+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BD
 | |
| *> \verbatim
 | |
| *>          BD is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>          Used to hold the diagonal of the bidiagonal matrix computed
 | |
| *>          by DGBBRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BE
 | |
| *> \verbatim
 | |
| *>          BE is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>          Used to hold the off-diagonal of the bidiagonal matrix
 | |
| *>          computed by DGBBRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is DOUBLE PRECISION array, dimension (LDQ, max(NN))
 | |
| *>          Used to hold the orthogonal matrix Q computed by DGBBRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of Q.  It must be at least 1
 | |
| *>          and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] P
 | |
| *> \verbatim
 | |
| *>          P is DOUBLE PRECISION array, dimension (LDP, max(NN))
 | |
| *>          Used to hold the orthogonal matrix P computed by DGBBRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDP
 | |
| *> \verbatim
 | |
| *>          LDP is INTEGER
 | |
| *>          The leading dimension of P.  It must be at least 1
 | |
| *>          and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (LDC, max(NN))
 | |
| *>          Used to hold the matrix C updated by DGBBRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of U.  It must be at least 1
 | |
| *>          and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CC
 | |
| *> \verbatim
 | |
| *>          CC is DOUBLE PRECISION array, dimension (LDC, max(NN))
 | |
| *>          Used to hold a copy of the matrix C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The number of entries in WORK.  This must be at least
 | |
| *>          max( LDA+1, max(NN)+1 )*max(NN).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (4)
 | |
| *>          The values computed by the tests described above.
 | |
| *>          The values are currently limited to 1/ulp, to avoid
 | |
| *>          overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          If 0, then everything ran OK.
 | |
| *>
 | |
| *>-----------------------------------------------------------------------
 | |
| *>
 | |
| *>       Some Local Variables and Parameters:
 | |
| *>       ---- ----- --------- --- ----------
 | |
| *>       ZERO, ONE       Real 0 and 1.
 | |
| *>       MAXTYP          The number of types defined.
 | |
| *>       NTEST           The number of tests performed, or which can
 | |
| *>                       be performed so far, for the current matrix.
 | |
| *>       NTESTT          The total number of tests performed so far.
 | |
| *>       NMAX            Largest value in NN.
 | |
| *>       NMATS           The number of matrices generated so far.
 | |
| *>       NERRS           The number of tests which have exceeded THRESH
 | |
| *>                       so far.
 | |
| *>       COND, IMODE     Values to be passed to the matrix generators.
 | |
| *>       ANORM           Norm of A; passed to matrix generators.
 | |
| *>
 | |
| *>       OVFL, UNFL      Overflow and underflow thresholds.
 | |
| *>       ULP, ULPINV     Finest relative precision and its inverse.
 | |
| *>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
 | |
| *>               The following four arrays decode JTYPE:
 | |
| *>       KTYPE(j)        The general type (1-10) for type "j".
 | |
| *>       KMODE(j)        The MODE value to be passed to the matrix
 | |
| *>                       generator for type "j".
 | |
| *>       KMAGN(j)        The order of magnitude ( O(1),
 | |
| *>                       O(overflow^(1/2) ), O(underflow^(1/2) )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
 | |
|      $                   NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
 | |
|      $                   BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
 | |
|      $                   LWORK, RESULT, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (input) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
 | |
|      $                   NRHS, NSIZES, NTYPES, NWDTHS
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), AB( LDAB, * ), BD( * ), BE( * ),
 | |
|      $                   C( LDC, * ), CC( LDC, * ), P( LDP, * ),
 | |
|      $                   Q( LDQ, * ), RESULT( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 15 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADMM, BADNN, BADNNB
 | |
|       INTEGER            I, IINFO, IMODE, ITYPE, J, JCOL, JR, JSIZE,
 | |
|      $                   JTYPE, JWIDTH, K, KL, KMAX, KU, M, MMAX, MNMAX,
 | |
|      $                   MNMIN, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
 | |
|      $                   NTESTT
 | |
|       DOUBLE PRECISION   AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL, ULP,
 | |
|      $                   ULPINV, UNFL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
 | |
|      $                   KMODE( MAXTYP ), KTYPE( MAXTYP )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DBDT01, DBDT02, DGBBRD, DLACPY, DLAHD2, DLASET,
 | |
|      $                   DLASUM, DLATMR, DLATMS, DORT01, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KTYPE / 1, 2, 5*4, 5*6, 3*9 /
 | |
|       DATA               KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3 /
 | |
|       DATA               KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
 | |
|      $                   0, 0 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       NTESTT = 0
 | |
|       INFO = 0
 | |
| *
 | |
| *     Important constants
 | |
| *
 | |
|       BADMM = .FALSE.
 | |
|       BADNN = .FALSE.
 | |
|       MMAX = 1
 | |
|       NMAX = 1
 | |
|       MNMAX = 1
 | |
|       DO 10 J = 1, NSIZES
 | |
|          MMAX = MAX( MMAX, MVAL( J ) )
 | |
|          IF( MVAL( J ).LT.0 )
 | |
|      $      BADMM = .TRUE.
 | |
|          NMAX = MAX( NMAX, NVAL( J ) )
 | |
|          IF( NVAL( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|          MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
 | |
|    10 CONTINUE
 | |
| *
 | |
|       BADNNB = .FALSE.
 | |
|       KMAX = 0
 | |
|       DO 20 J = 1, NWDTHS
 | |
|          KMAX = MAX( KMAX, KK( J ) )
 | |
|          IF( KK( J ).LT.0 )
 | |
|      $      BADNNB = .TRUE.
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADMM ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NWDTHS.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( BADNNB ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDA.LT.NMAX ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( LDAB.LT.2*KMAX+1 ) THEN
 | |
|          INFO = -15
 | |
|       ELSE IF( LDQ.LT.NMAX ) THEN
 | |
|          INFO = -19
 | |
|       ELSE IF( LDP.LT.NMAX ) THEN
 | |
|          INFO = -21
 | |
|       ELSE IF( LDC.LT.NMAX ) THEN
 | |
|          INFO = -23
 | |
|       ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
 | |
|          INFO = -26
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DCHKBB', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     More Important constants
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | |
|       ULPINV = ONE / ULP
 | |
|       RTUNFL = SQRT( UNFL )
 | |
|       RTOVFL = SQRT( OVFL )
 | |
| *
 | |
| *     Loop over sizes, widths, types
 | |
| *
 | |
|       NERRS = 0
 | |
|       NMATS = 0
 | |
| *
 | |
|       DO 160 JSIZE = 1, NSIZES
 | |
|          M = MVAL( JSIZE )
 | |
|          N = NVAL( JSIZE )
 | |
|          MNMIN = MIN( M, N )
 | |
|          AMNINV = ONE / DBLE( MAX( 1, M, N ) )
 | |
| *
 | |
|          DO 150 JWIDTH = 1, NWDTHS
 | |
|             K = KK( JWIDTH )
 | |
|             IF( K.GE.M .AND. K.GE.N )
 | |
|      $         GO TO 150
 | |
|             KL = MAX( 0, MIN( M-1, K ) )
 | |
|             KU = MAX( 0, MIN( N-1, K ) )
 | |
| *
 | |
|             IF( NSIZES.NE.1 ) THEN
 | |
|                MTYPES = MIN( MAXTYP, NTYPES )
 | |
|             ELSE
 | |
|                MTYPES = MIN( MAXTYP+1, NTYPES )
 | |
|             END IF
 | |
| *
 | |
|             DO 140 JTYPE = 1, MTYPES
 | |
|                IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $            GO TO 140
 | |
|                NMATS = NMATS + 1
 | |
|                NTEST = 0
 | |
| *
 | |
|                DO 30 J = 1, 4
 | |
|                   IOLDSD( J ) = ISEED( J )
 | |
|    30          CONTINUE
 | |
| *
 | |
| *              Compute "A".
 | |
| *
 | |
| *              Control parameters:
 | |
| *
 | |
| *                  KMAGN  KMODE        KTYPE
 | |
| *              =1  O(1)   clustered 1  zero
 | |
| *              =2  large  clustered 2  identity
 | |
| *              =3  small  exponential  (none)
 | |
| *              =4         arithmetic   diagonal, (w/ singular values)
 | |
| *              =5         random log   (none)
 | |
| *              =6         random       nonhermitian, w/ singular values
 | |
| *              =7                      (none)
 | |
| *              =8                      (none)
 | |
| *              =9                      random nonhermitian
 | |
| *
 | |
|                IF( MTYPES.GT.MAXTYP )
 | |
|      $            GO TO 90
 | |
| *
 | |
|                ITYPE = KTYPE( JTYPE )
 | |
|                IMODE = KMODE( JTYPE )
 | |
| *
 | |
| *              Compute norm
 | |
| *
 | |
|                GO TO ( 40, 50, 60 )KMAGN( JTYPE )
 | |
| *
 | |
|    40          CONTINUE
 | |
|                ANORM = ONE
 | |
|                GO TO 70
 | |
| *
 | |
|    50          CONTINUE
 | |
|                ANORM = ( RTOVFL*ULP )*AMNINV
 | |
|                GO TO 70
 | |
| *
 | |
|    60          CONTINUE
 | |
|                ANORM = RTUNFL*MAX( M, N )*ULPINV
 | |
|                GO TO 70
 | |
| *
 | |
|    70          CONTINUE
 | |
| *
 | |
|                CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | |
|                CALL DLASET( 'Full', LDAB, N, ZERO, ZERO, AB, LDAB )
 | |
|                IINFO = 0
 | |
|                COND = ULPINV
 | |
| *
 | |
| *              Special Matrices -- Identity & Jordan block
 | |
| *
 | |
| *                 Zero
 | |
| *
 | |
|                IF( ITYPE.EQ.1 ) THEN
 | |
|                   IINFO = 0
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *                 Identity
 | |
| *
 | |
|                   DO 80 JCOL = 1, N
 | |
|                      A( JCOL, JCOL ) = ANORM
 | |
|    80             CONTINUE
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.4 ) THEN
 | |
| *
 | |
| *                 Diagonal Matrix, singular values specified
 | |
| *
 | |
|                   CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
 | |
|      $                         ANORM, 0, 0, 'N', A, LDA, WORK( M+1 ),
 | |
|      $                         IINFO )
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.6 ) THEN
 | |
| *
 | |
| *                 Nonhermitian, singular values specified
 | |
| *
 | |
|                   CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
 | |
|      $                         ANORM, KL, KU, 'N', A, LDA, WORK( M+1 ),
 | |
|      $                         IINFO )
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.9 ) THEN
 | |
| *
 | |
| *                 Nonhermitian, random entries
 | |
| *
 | |
|                   CALL DLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | |
|      $                         'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                         WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, KL,
 | |
|      $                         KU, ZERO, ANORM, 'N', A, LDA, IDUMMA,
 | |
|      $                         IINFO )
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
|                   IINFO = 1
 | |
|                END IF
 | |
| *
 | |
| *              Generate Right-Hand Side
 | |
| *
 | |
|                CALL DLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( M+1 ), 1, ONE,
 | |
|      $                      WORK( 2*M+1 ), 1, ONE, 'N', IDUMMA, M, NRHS,
 | |
|      $                      ZERO, ONE, 'NO', C, LDC, IDUMMA, IINFO )
 | |
| *
 | |
|                IF( IINFO.NE.0 ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
 | |
|      $               JTYPE, IOLDSD
 | |
|                   INFO = ABS( IINFO )
 | |
|                   RETURN
 | |
|                END IF
 | |
| *
 | |
|    90          CONTINUE
 | |
| *
 | |
| *              Copy A to band storage.
 | |
| *
 | |
|                DO 110 J = 1, N
 | |
|                   DO 100 I = MAX( 1, J-KU ), MIN( M, J+KL )
 | |
|                      AB( KU+1+I-J, J ) = A( I, J )
 | |
|   100             CONTINUE
 | |
|   110          CONTINUE
 | |
| *
 | |
| *              Copy C
 | |
| *
 | |
|                CALL DLACPY( 'Full', M, NRHS, C, LDC, CC, LDC )
 | |
| *
 | |
| *              Call DGBBRD to compute B, Q and P, and to update C.
 | |
| *
 | |
|                CALL DGBBRD( 'B', M, N, NRHS, KL, KU, AB, LDAB, BD, BE,
 | |
|      $                      Q, LDQ, P, LDP, CC, LDC, WORK, IINFO )
 | |
| *
 | |
|                IF( IINFO.NE.0 ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9999 )'DGBBRD', IINFO, N, JTYPE,
 | |
|      $               IOLDSD
 | |
|                   INFO = ABS( IINFO )
 | |
|                   IF( IINFO.LT.0 ) THEN
 | |
|                      RETURN
 | |
|                   ELSE
 | |
|                      RESULT( 1 ) = ULPINV
 | |
|                      GO TO 120
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
| *              Test 1:  Check the decomposition A := Q * B * P'
 | |
| *                   2:  Check the orthogonality of Q
 | |
| *                   3:  Check the orthogonality of P
 | |
| *                   4:  Check the computation of Q' * C
 | |
| *
 | |
|                CALL DBDT01( M, N, -1, A, LDA, Q, LDQ, BD, BE, P, LDP,
 | |
|      $                      WORK, RESULT( 1 ) )
 | |
|                CALL DORT01( 'Columns', M, M, Q, LDQ, WORK, LWORK,
 | |
|      $                      RESULT( 2 ) )
 | |
|                CALL DORT01( 'Rows', N, N, P, LDP, WORK, LWORK,
 | |
|      $                      RESULT( 3 ) )
 | |
|                CALL DBDT02( M, NRHS, C, LDC, CC, LDC, Q, LDQ, WORK,
 | |
|      $                      RESULT( 4 ) )
 | |
| *
 | |
| *              End of Loop -- Check for RESULT(j) > THRESH
 | |
| *
 | |
|                NTEST = 4
 | |
|   120          CONTINUE
 | |
|                NTESTT = NTESTT + NTEST
 | |
| *
 | |
| *              Print out tests which fail.
 | |
| *
 | |
|                DO 130 JR = 1, NTEST
 | |
|                   IF( RESULT( JR ).GE.THRESH ) THEN
 | |
|                      IF( NERRS.EQ.0 )
 | |
|      $                  CALL DLAHD2( NOUNIT, 'DBB' )
 | |
|                      NERRS = NERRS + 1
 | |
|                      WRITE( NOUNIT, FMT = 9998 )M, N, K, IOLDSD, JTYPE,
 | |
|      $                  JR, RESULT( JR )
 | |
|                   END IF
 | |
|   130          CONTINUE
 | |
| *
 | |
|   140       CONTINUE
 | |
|   150    CONTINUE
 | |
|   160 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL DLASUM( 'DBB', NOUNIT, NERRS, NTESTT )
 | |
|       RETURN
 | |
| *
 | |
|  9999 FORMAT( ' DCHKBB: ', A, ' returned INFO=', I5, '.', / 9X, 'M=',
 | |
|      $      I5, ' N=', I5, ' K=', I5, ', JTYPE=', I5, ', ISEED=(',
 | |
|      $      3( I5, ',' ), I5, ')' )
 | |
|  9998 FORMAT( ' M =', I4, ' N=', I4, ', K=', I3, ', seed=',
 | |
|      $      4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
 | |
| *
 | |
| *     End of DCHKBB
 | |
| *
 | |
|       END
 |