290 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE DTRSVF ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INCX, LDA, N
 | |
|       CHARACTER*1        DIAG, TRANS, UPLO
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), X( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  DTRSV  solves one of the systems of equations
 | |
| *
 | |
| *     A*x = b,   or   A'*x = b,
 | |
| *
 | |
| *  where b and x are n element vectors and A is an n by n unit, or
 | |
| *  non-unit, upper or lower triangular matrix.
 | |
| *
 | |
| *  No test for singularity or near-singularity is included in this
 | |
| *  routine. Such tests must be performed before calling this routine.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On entry, UPLO specifies whether the matrix is an upper or
 | |
| *           lower triangular matrix as follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry, TRANS specifies the equations to be solved as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'   A*x = b.
 | |
| *
 | |
| *              TRANS = 'T' or 't'   A'*x = b.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'   A'*x = b.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  DIAG   - CHARACTER*1.
 | |
| *           On entry, DIAG specifies whether or not A is unit
 | |
| *           triangular as follows:
 | |
| *
 | |
| *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *
 | |
| *              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *                                  triangular.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the order of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
 | |
| *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | |
| *           upper triangular part of the array A must contain the upper
 | |
| *           triangular matrix and the strictly lower triangular part of
 | |
| *           A is not referenced.
 | |
| *           Before entry with UPLO = 'L' or 'l', the leading n by n
 | |
| *           lower triangular part of the array A must contain the lower
 | |
| *           triangular matrix and the strictly upper triangular part of
 | |
| *           A is not referenced.
 | |
| *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 | |
| *           A are not referenced either, but are assumed to be unity.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program. LDA must be at least
 | |
| *           max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - DOUBLE PRECISION array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *           Before entry, the incremented array X must contain the n
 | |
| *           element right-hand side vector b. On exit, X is overwritten
 | |
| *           with the solution vector x.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER        ( ZERO = 0.0D+0 )
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   TEMP
 | |
|       INTEGER            I, INFO, IX, J, JX, KX
 | |
|       LOGICAL            NOUNIT
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( UPLO , 'U' ).AND.
 | |
|      $         .NOT.LSAME( UPLO , 'L' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'T' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'C' )      )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
 | |
|      $         .NOT.LSAME( DIAG , 'N' )      )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) )THEN
 | |
|          INFO = 6
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'DTRSV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       NOUNIT = LSAME( DIAG, 'N' )
 | |
| *
 | |
| *     Set up the start point in X if the increment is not unity. This
 | |
| *     will be  ( N - 1 )*INCX  too small for descending loops.
 | |
| *
 | |
|       IF( INCX.LE.0 )THEN
 | |
|          KX = 1 - ( N - 1 )*INCX
 | |
|       ELSE IF( INCX.NE.1 )THEN
 | |
|          KX = 1
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through A.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) )THEN
 | |
| *
 | |
| *        Form  x := inv( A )*x.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) )THEN
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 20, J = N, 1, -1
 | |
|                   IF( X( J ).NE.ZERO )THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( J ) = X( J )/A( J, J )
 | |
|                      TEMP = X( J )
 | |
|                      DO 10, I = J - 1, 1, -1
 | |
|                         X( I ) = X( I ) - TEMP*A( I, J )
 | |
|    10                CONTINUE
 | |
|                   END IF
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX + ( N - 1 )*INCX
 | |
|                DO 40, J = N, 1, -1
 | |
|                   IF( X( JX ).NE.ZERO )THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( JX ) = X( JX )/A( J, J )
 | |
|                      TEMP = X( JX )
 | |
|                      IX   = JX
 | |
|                      DO 30, I = J - 1, 1, -1
 | |
|                         IX      = IX      - INCX
 | |
|                         X( IX ) = X( IX ) - TEMP*A( I, J )
 | |
|    30                CONTINUE
 | |
|                   END IF
 | |
|                   JX = JX - INCX
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 60, J = 1, N
 | |
|                   IF( X( J ).NE.ZERO )THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( J ) = X( J )/A( J, J )
 | |
|                      TEMP = X( J )
 | |
|                      DO 50, I = J + 1, N
 | |
|                         X( I ) = X( I ) - TEMP*A( I, J )
 | |
|    50                CONTINUE
 | |
|                   END IF
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX
 | |
|                DO 80, J = 1, N
 | |
|                   IF( X( JX ).NE.ZERO )THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( JX ) = X( JX )/A( J, J )
 | |
|                      TEMP = X( JX )
 | |
|                      IX   = JX
 | |
|                      DO 70, I = J + 1, N
 | |
|                         IX      = IX      + INCX
 | |
|                         X( IX ) = X( IX ) - TEMP*A( I, J )
 | |
|    70                CONTINUE
 | |
|                   END IF
 | |
|                   JX = JX + INCX
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  x := inv( A' )*x.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) )THEN
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 100, J = 1, N
 | |
|                   TEMP = X( J )
 | |
|                   DO 90, I = 1, J - 1
 | |
|                      TEMP = TEMP - A( I, J )*X( I )
 | |
|    90             CONTINUE
 | |
|                   IF( NOUNIT )
 | |
|      $               TEMP = TEMP/A( J, J )
 | |
|                   X( J ) = TEMP
 | |
|   100          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX
 | |
|                DO 120, J = 1, N
 | |
|                   TEMP = X( JX )
 | |
|                   IX   = KX
 | |
|                   DO 110, I = 1, J - 1
 | |
|                      TEMP = TEMP - A( I, J )*X( IX )
 | |
|                      IX   = IX   + INCX
 | |
|   110             CONTINUE
 | |
|                   IF( NOUNIT )
 | |
|      $               TEMP = TEMP/A( J, J )
 | |
|                   X( JX ) = TEMP
 | |
|                   JX      = JX   + INCX
 | |
|   120          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 140, J = N, 1, -1
 | |
|                   TEMP = X( J )
 | |
|                   DO 130, I = N, J + 1, -1
 | |
|                      TEMP = TEMP - A( I, J )*X( I )
 | |
|   130             CONTINUE
 | |
|                   IF( NOUNIT )
 | |
|      $               TEMP = TEMP/A( J, J )
 | |
|                   X( J ) = TEMP
 | |
|   140          CONTINUE
 | |
|             ELSE
 | |
|                KX = KX + ( N - 1 )*INCX
 | |
|                JX = KX
 | |
|                DO 160, J = N, 1, -1
 | |
|                   TEMP = X( JX )
 | |
|                   IX   = KX
 | |
|                   DO 150, I = N, J + 1, -1
 | |
|                      TEMP = TEMP - A( I, J )*X( IX )
 | |
|                      IX   = IX   - INCX
 | |
|   150             CONTINUE
 | |
|                   IF( NOUNIT )
 | |
|      $               TEMP = TEMP/A( J, J )
 | |
|                   X( JX ) = TEMP
 | |
|                   JX      = JX   - INCX
 | |
|   160          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DTRSV .
 | |
| *
 | |
|       END
 |