188 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE CPOTRFF( UPLO, N, A, LDA, INFO )
 | |
| *
 | |
| *  -- LAPACK routine (version 3.0) --
 | |
| *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
 | |
| *     Courant Institute, Argonne National Lab, and Rice University
 | |
| *     September 30, 1994
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  CPOTRF computes the Cholesky factorization of a complex Hermitian
 | |
| *  positive definite matrix A.
 | |
| *
 | |
| *  The factorization has the form
 | |
| *     A = U**H * U,  if UPLO = 'U', or
 | |
| *     A = L  * L**H,  if UPLO = 'L',
 | |
| *  where U is an upper triangular matrix and L is lower triangular.
 | |
| *
 | |
| *  This is the block version of the algorithm, calling Level 3 BLAS.
 | |
| *
 | |
| *  Arguments
 | |
| *  =========
 | |
| *
 | |
| *  UPLO    (input) CHARACTER*1
 | |
| *          = 'U':  Upper triangle of A is stored;
 | |
| *          = 'L':  Lower triangle of A is stored.
 | |
| *
 | |
| *  N       (input) INTEGER
 | |
| *          The order of the matrix A.  N >= 0.
 | |
| *
 | |
| *  A       (input/output) COMPLEX array, dimension (LDA,N)
 | |
| *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 | |
| *          N-by-N upper triangular part of A contains the upper
 | |
| *          triangular part of the matrix A, and the strictly lower
 | |
| *          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *          leading N-by-N lower triangular part of A contains the lower
 | |
| *          triangular part of the matrix A, and the strictly upper
 | |
| *          triangular part of A is not referenced.
 | |
| *
 | |
| *          On exit, if INFO = 0, the factor U or L from the Cholesky
 | |
| *          factorization A = U**H*U or A = L*L**H.
 | |
| *
 | |
| *  LDA     (input) INTEGER
 | |
| *          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *
 | |
| *  INFO    (output) INTEGER
 | |
| *          = 0:  successful exit
 | |
| *          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *          > 0:  if INFO = i, the leading minor of order i is not
 | |
| *                positive definite, and the factorization could not be
 | |
| *                completed.
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( ONE = 1.0E+0, CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            J, JB, NB
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CHERK, CPOTF2, CTRSM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CPOTRF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Determine the block size for this environment.
 | |
| *
 | |
|       NB = 56
 | |
| 
 | |
|       IF( NB.LE.1 .OR. NB.GE.N ) THEN
 | |
| *
 | |
| *        Use unblocked code.
 | |
| *
 | |
|          CALL CPOTF2( UPLO, N, A, LDA, INFO )
 | |
|       ELSE
 | |
| *
 | |
| *        Use blocked code.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
| *
 | |
| *           Compute the Cholesky factorization A = U'*U.
 | |
| *
 | |
|             DO 10 J = 1, N, NB
 | |
| *
 | |
| *              Update and factorize the current diagonal block and test
 | |
| *              for non-positive-definiteness.
 | |
| *
 | |
|                JB = MIN( NB, N-J+1 )
 | |
|                CALL CHERK( 'Upper', 'Conjugate transpose', JB, J-1,
 | |
|      $                     -ONE, A( 1, J ), LDA, ONE, A( J, J ), LDA )
 | |
|                CALL CPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
 | |
|                IF( INFO.NE.0 )
 | |
|      $            GO TO 30
 | |
|                IF( J+JB.LE.N ) THEN
 | |
| *
 | |
| *                 Compute the current block row.
 | |
| *
 | |
|                   CALL CGEMM( 'Conjugate transpose', 'No transpose', JB,
 | |
|      $                        N-J-JB+1, J-1, -CONE, A( 1, J ), LDA,
 | |
|      $                        A( 1, J+JB ), LDA, CONE, A( J, J+JB ),
 | |
|      $                        LDA )
 | |
|                   CALL CTRSM( 'Left', 'Upper', 'Conjugate transpose',
 | |
|      $                        'Non-unit', JB, N-J-JB+1, CONE, A( J, J ),
 | |
|      $                        LDA, A( J, J+JB ), LDA )
 | |
|                END IF
 | |
|    10       CONTINUE
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Compute the Cholesky factorization A = L*L'.
 | |
| *
 | |
|             DO 20 J = 1, N, NB
 | |
| *
 | |
| *              Update and factorize the current diagonal block and test
 | |
| *              for non-positive-definiteness.
 | |
| *
 | |
|                JB = MIN( NB, N-J+1 )
 | |
|                CALL CHERK( 'Lower', 'No transpose', JB, J-1, -ONE,
 | |
|      $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
 | |
|                CALL CPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
 | |
|                IF( INFO.NE.0 )
 | |
|      $            GO TO 30
 | |
|                IF( J+JB.LE.N ) THEN
 | |
| *
 | |
| *                 Compute the current block column.
 | |
| *
 | |
|                   CALL CGEMM( 'No transpose', 'Conjugate transpose',
 | |
|      $                        N-J-JB+1, JB, J-1, -CONE, A( J+JB, 1 ),
 | |
|      $                        LDA, A( J, 1 ), LDA, CONE, A( J+JB, J ),
 | |
|      $                        LDA )
 | |
|                   CALL CTRSM( 'Right', 'Lower', 'Conjugate transpose',
 | |
|      $                        'Non-unit', N-J-JB+1, JB, CONE, A( J, J ),
 | |
|      $                        LDA, A( J+JB, J ), LDA )
 | |
|                END IF
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
|       GO TO 40
 | |
| *
 | |
|    30 CONTINUE
 | |
|       INFO = INFO + J - 1
 | |
| *
 | |
|    40 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of CPOTRF
 | |
| *
 | |
|       END
 |