333 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE CGEMVF ( TRANS, M, N, ALPHA, A, LDA, X, INCX,
 | |
|      $                   BETA, Y, INCY )
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX            ALPHA, BETA
 | |
|       INTEGER            INCX, INCY, LDA, M, N
 | |
|       CHARACTER*1        TRANS
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  CGEMV  performs one of the matrix-vector operations
 | |
| *
 | |
| *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or
 | |
| *
 | |
| *     y := alpha*conjg( A' )*x + beta*y,
 | |
| *
 | |
| *  where alpha and beta are scalars, x and y are vectors and A is an
 | |
| *  m by n matrix.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry, TRANS specifies the operation to be performed as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 | |
| *
 | |
| *              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  M      - INTEGER.
 | |
| *           On entry, M specifies the number of rows of the matrix A.
 | |
| *           M must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the number of columns of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - COMPLEX         .
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - COMPLEX          array of DIMENSION ( LDA, n ).
 | |
| *           Before entry, the leading m by n part of the array A must
 | |
| *           contain the matrix of coefficients.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program. LDA must be at least
 | |
| *           max( 1, m ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - COMPLEX          array of DIMENSION at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 | |
| *           and at least
 | |
| *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 | |
| *           Before entry, the incremented array X must contain the
 | |
| *           vector x.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - COMPLEX         .
 | |
| *           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *           supplied as zero then Y need not be set on input.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  Y      - COMPLEX          array of DIMENSION at least
 | |
| *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
 | |
| *           and at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
 | |
| *           Before entry with BETA non-zero, the incremented array Y
 | |
| *           must contain the vector y. On exit, Y is overwritten by the
 | |
| *           updated vector y.
 | |
| *
 | |
| *  INCY   - INTEGER.
 | |
| *           On entry, INCY specifies the increment for the elements of
 | |
| *           Y. INCY must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ONE
 | |
|       PARAMETER        ( ONE  = ( 1.0E+0, 0.0E+0 ) )
 | |
|       COMPLEX            ZERO
 | |
|       PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX            TEMP
 | |
|       INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
 | |
|       LOGICAL            NOCONJ, NOTRANS, XCONJ
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CONJG, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( TRANS, 'N' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'T' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'R' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'C' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'O' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'U' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'S' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'D' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( M.LT.0 )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) )THEN
 | |
|          INFO = 6
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 8
 | |
|       ELSE IF( INCY.EQ.0 )THEN
 | |
|          INFO = 11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'CGEMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
 | |
|      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
|       NOCONJ = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
 | |
|      $     .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'U' ))
 | |
| 
 | |
|       NOTRANS = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'R' )
 | |
|      $     .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'S' ))
 | |
| 
 | |
|       XCONJ  = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
 | |
|      $     .OR. LSAME( TRANS, 'R' ) .OR. LSAME( TRANS, 'C' ))
 | |
| *
 | |
| *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
 | |
| *     up the start points in  X  and  Y.
 | |
| *
 | |
|       IF(NOTRANS)THEN
 | |
|          LENX = N
 | |
|          LENY = M
 | |
|       ELSE
 | |
|          LENX = M
 | |
|          LENY = N
 | |
|       END IF
 | |
|       IF( INCX.GT.0 )THEN
 | |
|          KX = 1
 | |
|       ELSE
 | |
|          KX = 1 - ( LENX - 1 )*INCX
 | |
|       END IF
 | |
|       IF( INCY.GT.0 )THEN
 | |
|          KY = 1
 | |
|       ELSE
 | |
|          KY = 1 - ( LENY - 1 )*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through A.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF( BETA.NE.ONE )THEN
 | |
|          IF( INCY.EQ.1 )THEN
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 10, I = 1, LENY
 | |
|                   Y( I ) = ZERO
 | |
|    10          CONTINUE
 | |
|             ELSE
 | |
|                DO 20, I = 1, LENY
 | |
|                   Y( I ) = BETA*Y( I )
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IY = KY
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 30, I = 1, LENY
 | |
|                   Y( IY ) = ZERO
 | |
|                   IY      = IY   + INCY
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
|                DO 40, I = 1, LENY
 | |
|                   Y( IY ) = BETA*Y( IY )
 | |
|                   IY      = IY           + INCY
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ALPHA.EQ.ZERO )
 | |
|      $   RETURN
 | |
| 
 | |
|       IF(NOTRANS)THEN
 | |
| *
 | |
| *        Form  y := alpha*A*x + y.
 | |
| *
 | |
|          JX = KX
 | |
|          IF( INCY.EQ.1 )THEN
 | |
|             DO 60, J = 1, N
 | |
|                IF( X( JX ).NE.ZERO )THEN
 | |
|                   IF (XCONJ) THEN
 | |
|                      TEMP = ALPHA*X( JX )
 | |
|                   ELSE
 | |
|                      TEMP = ALPHA*CONJG(X( JX ))
 | |
|                   ENDIF
 | |
|                   IF (NOCONJ) THEN
 | |
|                      DO 50, I = 1, M
 | |
|                         Y( I ) = Y( I ) + TEMP*A( I, J )
 | |
|  50                  CONTINUE
 | |
|                   ELSE
 | |
|                      DO 55, I = 1, M
 | |
|                         Y( I ) = Y( I ) + TEMP*CONJG(A( I, J ))
 | |
|  55                  CONTINUE
 | |
|                   ENDIF
 | |
|                END IF
 | |
|                JX = JX + INCX
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             DO 80, J = 1, N
 | |
|                IF( X( JX ).NE.ZERO )THEN
 | |
|                   IF (XCONJ) THEN
 | |
|                      TEMP = ALPHA*X( JX )
 | |
|                   ELSE
 | |
|                      TEMP = ALPHA*CONJG(X( JX ))
 | |
|                   ENDIF
 | |
|                   IY   = KY
 | |
|                   IF (NOCONJ) THEN
 | |
|                      DO 70, I = 1, M
 | |
|                         Y( IY ) = Y( IY ) + TEMP*A( I, J )
 | |
|                         IY      = IY      + INCY
 | |
|  70                  CONTINUE
 | |
|                   ELSE
 | |
|                      DO 75, I = 1, M
 | |
|                         Y( IY ) = Y( IY ) + TEMP* CONJG(A( I, J ))
 | |
|                         IY      = IY      + INCY
 | |
|  75                  CONTINUE
 | |
|                   ENDIF
 | |
|                END IF
 | |
|                JX = JX + INCX
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
 | |
| *
 | |
|          JY = KY
 | |
|          IF( INCX.EQ.1 )THEN
 | |
|             DO 110, J = 1, N
 | |
|                TEMP = ZERO
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 90, I = 1, M
 | |
|                      IF (XCONJ) THEN
 | |
|                         TEMP = TEMP + A( I, J )*X( I )
 | |
|                      ELSE
 | |
|                         TEMP = TEMP + A( I, J )*CONJG(X( I ))
 | |
|                      ENDIF
 | |
|    90             CONTINUE
 | |
|                ELSE
 | |
|                   DO 100, I = 1, M
 | |
|                      IF (XCONJ) THEN
 | |
|                         TEMP = TEMP + CONJG( A( I, J ) )*X( I )
 | |
|                      ELSE
 | |
|                         TEMP = TEMP + CONJG( A( I, J ) )*CONJG(X( I ))
 | |
|                      ENDIF
 | |
|   100             CONTINUE
 | |
|                END IF
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP
 | |
|                JY      = JY      + INCY
 | |
|   110       CONTINUE
 | |
|          ELSE
 | |
|             DO 140, J = 1, N
 | |
|                TEMP = ZERO
 | |
|                IX   = KX
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 120, I = 1, M
 | |
|                      IF (XCONJ) THEN
 | |
|                         TEMP = TEMP + A( I, J )*X( IX )
 | |
|                      ELSE
 | |
|                         TEMP = TEMP + A( I, J )*CONJG(X( IX ))
 | |
|                      ENDIF
 | |
|                      IX   = IX   + INCX
 | |
|   120             CONTINUE
 | |
|                ELSE
 | |
|                   DO 130, I = 1, M
 | |
|                      IF (XCONJ) THEN
 | |
|                         TEMP = TEMP + CONJG( A( I, J ) )*X( IX )
 | |
|                      ELSE
 | |
|                        TEMP = TEMP + CONJG( A( I, J ) )*CONJG(X( IX ))
 | |
|                      ENDIF
 | |
|                      IX   = IX   + INCX
 | |
|   130             CONTINUE
 | |
|                END IF
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP
 | |
|                JY      = JY      + INCY
 | |
|   140       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGEMV .
 | |
| *
 | |
|       END
 | |
| 
 |