383 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			383 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGET22
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
 | |
| *                          WI, WORK, RESULT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANSA, TRANSE, TRANSW
 | |
| *       INTEGER            LDA, LDE, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
 | |
| *      $                   WORK( * ), WR( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGET22 does an eigenvector check.
 | |
| *>
 | |
| *> The basic test is:
 | |
| *>
 | |
| *>    RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
 | |
| *>
 | |
| *> using the 1-norm.  It also tests the normalization of E:
 | |
| *>
 | |
| *>    RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
 | |
| *>                 j
 | |
| *>
 | |
| *> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
 | |
| *> vector.  If an eigenvector is complex, as determined from WI(j)
 | |
| *> nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum
 | |
| *> of
 | |
| *>    |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)|
 | |
| *>
 | |
| *> W is a block diagonal matrix, with a 1 by 1 block for each real
 | |
| *> eigenvalue and a 2 by 2 block for each complex conjugate pair.
 | |
| *> If eigenvalues j and j+1 are a complex conjugate pair, so that
 | |
| *> WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2
 | |
| *> block corresponding to the pair will be:
 | |
| *>
 | |
| *>    (  wr  wi  )
 | |
| *>    ( -wi  wr  )
 | |
| *>
 | |
| *> Such a block multiplying an n by 2 matrix ( ur ui ) on the right
 | |
| *> will be the same as multiplying  ur + i*ui  by  wr + i*wi.
 | |
| *>
 | |
| *> To handle various schemes for storage of left eigenvectors, there are
 | |
| *> options to use A-transpose instead of A, E-transpose instead of E,
 | |
| *> and/or W-transpose instead of W.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANSA
 | |
| *> \verbatim
 | |
| *>          TRANSA is CHARACTER*1
 | |
| *>          Specifies whether or not A is transposed.
 | |
| *>          = 'N':  No transpose
 | |
| *>          = 'T':  Transpose
 | |
| *>          = 'C':  Conjugate transpose (= Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSE
 | |
| *> \verbatim
 | |
| *>          TRANSE is CHARACTER*1
 | |
| *>          Specifies whether or not E is transposed.
 | |
| *>          = 'N':  No transpose, eigenvectors are in columns of E
 | |
| *>          = 'T':  Transpose, eigenvectors are in rows of E
 | |
| *>          = 'C':  Conjugate transpose (= Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSW
 | |
| *> \verbatim
 | |
| *>          TRANSW is CHARACTER*1
 | |
| *>          Specifies whether or not W is transposed.
 | |
| *>          = 'N':  No transpose
 | |
| *>          = 'T':  Transpose, use -WI(j) instead of WI(j)
 | |
| *>          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          The matrix whose eigenvectors are in E.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (LDE,N)
 | |
| *>          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
 | |
| *>          are stored in the columns of E, if TRANSE = 'T' or 'C', the
 | |
| *>          eigenvectors are stored in the rows of E.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDE
 | |
| *> \verbatim
 | |
| *>          LDE is INTEGER
 | |
| *>          The leading dimension of the array E.  LDE >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WR
 | |
| *> \verbatim
 | |
| *>          WR is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WI
 | |
| *> \verbatim
 | |
| *>          WI is REAL array, dimension (N)
 | |
| *>
 | |
| *>          The real and imaginary parts of the eigenvalues of A.
 | |
| *>          Purely real eigenvalues are indicated by WI(j) = 0.
 | |
| *>          Complex conjugate pairs are indicated by WR(j)=WR(j+1) and
 | |
| *>          WI(j) = - WI(j+1) non-zero; the real part is assumed to be
 | |
| *>          stored in the j-th row/column and the imaginary part in
 | |
| *>          the (j+1)-th row/column.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (N*(N+1))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (2)
 | |
| *>          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
 | |
| *>          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
 | |
| *>                       j
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
 | |
|      $                   WI, WORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANSA, TRANSE, TRANSW
 | |
|       INTEGER            LDA, LDE, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
 | |
|      $                   WORK( * ), WR( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0, ONE = 1.0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          NORMA, NORME
 | |
|       INTEGER            IECOL, IEROW, INCE, IPAIR, ITRNSE, J, JCOL,
 | |
|      $                   JVEC
 | |
|       REAL               ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
 | |
|      $                   ULP, UNFL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               WMAT( 2, 2 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SGEMM, SLASET
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Initialize RESULT (in case N=0)
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       ULP = SLAMCH( 'Precision' )
 | |
| *
 | |
|       ITRNSE = 0
 | |
|       INCE = 1
 | |
|       NORMA = 'O'
 | |
|       NORME = 'O'
 | |
| *
 | |
|       IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
 | |
|          NORMA = 'I'
 | |
|       END IF
 | |
|       IF( LSAME( TRANSE, 'T' ) .OR. LSAME( TRANSE, 'C' ) ) THEN
 | |
|          NORME = 'I'
 | |
|          ITRNSE = 1
 | |
|          INCE = LDE
 | |
|       END IF
 | |
| *
 | |
| *     Check normalization of E
 | |
| *
 | |
|       ENRMIN = ONE / ULP
 | |
|       ENRMAX = ZERO
 | |
|       IF( ITRNSE.EQ.0 ) THEN
 | |
| *
 | |
| *        Eigenvectors are column vectors.
 | |
| *
 | |
|          IPAIR = 0
 | |
|          DO 30 JVEC = 1, N
 | |
|             TEMP1 = ZERO
 | |
|             IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
 | |
|      $         IPAIR = 1
 | |
|             IF( IPAIR.EQ.1 ) THEN
 | |
| *
 | |
| *              Complex eigenvector
 | |
| *
 | |
|                DO 10 J = 1, N
 | |
|                   TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
 | |
|      $                    ABS( E( J, JVEC+1 ) ) )
 | |
|    10          CONTINUE
 | |
|                ENRMIN = MIN( ENRMIN, TEMP1 )
 | |
|                ENRMAX = MAX( ENRMAX, TEMP1 )
 | |
|                IPAIR = 2
 | |
|             ELSE IF( IPAIR.EQ.2 ) THEN
 | |
|                IPAIR = 0
 | |
|             ELSE
 | |
| *
 | |
| *              Real eigenvector
 | |
| *
 | |
|                DO 20 J = 1, N
 | |
|                   TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
 | |
|    20          CONTINUE
 | |
|                ENRMIN = MIN( ENRMIN, TEMP1 )
 | |
|                ENRMAX = MAX( ENRMAX, TEMP1 )
 | |
|                IPAIR = 0
 | |
|             END IF
 | |
|    30    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Eigenvectors are row vectors.
 | |
| *
 | |
|          DO 40 JVEC = 1, N
 | |
|             WORK( JVEC ) = ZERO
 | |
|    40    CONTINUE
 | |
| *
 | |
|          DO 60 J = 1, N
 | |
|             IPAIR = 0
 | |
|             DO 50 JVEC = 1, N
 | |
|                IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
 | |
|      $            IPAIR = 1
 | |
|                IF( IPAIR.EQ.1 ) THEN
 | |
|                   WORK( JVEC ) = MAX( WORK( JVEC ),
 | |
|      $                           ABS( E( J, JVEC ) )+ABS( E( J,
 | |
|      $                           JVEC+1 ) ) )
 | |
|                   WORK( JVEC+1 ) = WORK( JVEC )
 | |
|                ELSE IF( IPAIR.EQ.2 ) THEN
 | |
|                   IPAIR = 0
 | |
|                ELSE
 | |
|                   WORK( JVEC ) = MAX( WORK( JVEC ),
 | |
|      $                           ABS( E( J, JVEC ) ) )
 | |
|                   IPAIR = 0
 | |
|                END IF
 | |
|    50       CONTINUE
 | |
|    60    CONTINUE
 | |
| *
 | |
|          DO 70 JVEC = 1, N
 | |
|             ENRMIN = MIN( ENRMIN, WORK( JVEC ) )
 | |
|             ENRMAX = MAX( ENRMAX, WORK( JVEC ) )
 | |
|    70    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Norm of A:
 | |
| *
 | |
|       ANORM = MAX( SLANGE( NORMA, N, N, A, LDA, WORK ), UNFL )
 | |
| *
 | |
| *     Norm of E:
 | |
| *
 | |
|       ENORM = MAX( SLANGE( NORME, N, N, E, LDE, WORK ), ULP )
 | |
| *
 | |
| *     Norm of error:
 | |
| *
 | |
| *     Error =  AE - EW
 | |
| *
 | |
|       CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
 | |
| *
 | |
|       IPAIR = 0
 | |
|       IEROW = 1
 | |
|       IECOL = 1
 | |
| *
 | |
|       DO 80 JCOL = 1, N
 | |
|          IF( ITRNSE.EQ.1 ) THEN
 | |
|             IEROW = JCOL
 | |
|          ELSE
 | |
|             IECOL = JCOL
 | |
|          END IF
 | |
| *
 | |
|          IF( IPAIR.EQ.0 .AND. WI( JCOL ).NE.ZERO )
 | |
|      $      IPAIR = 1
 | |
| *
 | |
|          IF( IPAIR.EQ.1 ) THEN
 | |
|             WMAT( 1, 1 ) = WR( JCOL )
 | |
|             WMAT( 2, 1 ) = -WI( JCOL )
 | |
|             WMAT( 1, 2 ) = WI( JCOL )
 | |
|             WMAT( 2, 2 ) = WR( JCOL )
 | |
|             CALL SGEMM( TRANSE, TRANSW, N, 2, 2, ONE, E( IEROW, IECOL ),
 | |
|      $                  LDE, WMAT, 2, ZERO, WORK( N*( JCOL-1 )+1 ), N )
 | |
|             IPAIR = 2
 | |
|          ELSE IF( IPAIR.EQ.2 ) THEN
 | |
|             IPAIR = 0
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
|             CALL SAXPY( N, WR( JCOL ), E( IEROW, IECOL ), INCE,
 | |
|      $                  WORK( N*( JCOL-1 )+1 ), 1 )
 | |
|             IPAIR = 0
 | |
|          END IF
 | |
| *
 | |
|    80 CONTINUE
 | |
| *
 | |
|       CALL SGEMM( TRANSA, TRANSE, N, N, N, ONE, A, LDA, E, LDE, -ONE,
 | |
|      $            WORK, N )
 | |
| *
 | |
|       ERRNRM = SLANGE( 'One', N, N, WORK, N, WORK( N*N+1 ) ) / ENORM
 | |
| *
 | |
| *     Compute RESULT(1) (avoiding under/overflow)
 | |
| *
 | |
|       IF( ANORM.GT.ERRNRM ) THEN
 | |
|          RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
 | |
|       ELSE
 | |
|          IF( ANORM.LT.ONE ) THEN
 | |
|             RESULT( 1 ) = ONE / ULP
 | |
|          ELSE
 | |
|             RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Compute RESULT(2) : the normalization error in E.
 | |
| *
 | |
|       RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
 | |
|      $              ( REAL( N )*ULP )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGET22
 | |
| *
 | |
|       END
 |