382 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			382 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZUNHR_COL02
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZUNHR_COL02( M, N, MB1, NB1, NB2, RESULT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER           M, N, MB1, NB1, NB2
 | 
						|
*       .. Return values ..
 | 
						|
*       DOUBLE PRECISION  RESULT(6)
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZUNHR_COL02 tests ZUNGTSQR_ROW and ZUNHR_COL inside ZGETSQRHRT
 | 
						|
*> (which calls ZLATSQR, ZUNGTSQR_ROW and ZUNHR_COL) using ZGEMQRT.
 | 
						|
*> Therefore, ZLATSQR (part of ZGEQR), ZGEMQRT (part of ZGEMQR)
 | 
						|
*> have to be tested before this test.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          Number of rows in test matrix.
 | 
						|
*> \endverbatim
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          Number of columns in test matrix.
 | 
						|
*> \endverbatim
 | 
						|
*> \param[in] MB1
 | 
						|
*> \verbatim
 | 
						|
*>          MB1 is INTEGER
 | 
						|
*>          Number of row in row block in an input test matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB1
 | 
						|
*> \verbatim
 | 
						|
*>          NB1 is INTEGER
 | 
						|
*>          Number of columns in column block an input test matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB2
 | 
						|
*> \verbatim
 | 
						|
*>          NB2 is INTEGER
 | 
						|
*>          Number of columns in column block in an output test matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION array, dimension (6)
 | 
						|
*>          Results of each of the six tests below.
 | 
						|
*>
 | 
						|
*>            A is a m-by-n test input matrix to be factored.
 | 
						|
*>            so that A = Q_gr * ( R )
 | 
						|
*>                               ( 0 ),
 | 
						|
*>
 | 
						|
*>            Q_qr is an implicit m-by-m unitary Q matrix, the result
 | 
						|
*>            of factorization in blocked WY-representation,
 | 
						|
*>            stored in ZGEQRT output format.
 | 
						|
*>
 | 
						|
*>            R is a n-by-n upper-triangular matrix,
 | 
						|
*>
 | 
						|
*>            0 is a (m-n)-by-n zero matrix,
 | 
						|
*>
 | 
						|
*>            Q is an explicit m-by-m unitary matrix Q = Q_gr * I
 | 
						|
*>
 | 
						|
*>            C is an m-by-n random matrix,
 | 
						|
*>
 | 
						|
*>            D is an n-by-m random matrix.
 | 
						|
*>
 | 
						|
*>          The six tests are:
 | 
						|
*>
 | 
						|
*>          RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| )
 | 
						|
*>            is equivalent to test for | A - Q * R | / (eps * m * |A|),
 | 
						|
*>
 | 
						|
*>          RESULT(2) = |I - (Q**H) * Q| / ( eps * m ),
 | 
						|
*>
 | 
						|
*>          RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|),
 | 
						|
*>
 | 
						|
*>          RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|)
 | 
						|
*>
 | 
						|
*>          RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|)
 | 
						|
*>
 | 
						|
*>          RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|),
 | 
						|
*>
 | 
						|
*>          where:
 | 
						|
*>            Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are
 | 
						|
*>            computed using ZGEMQRT,
 | 
						|
*>
 | 
						|
*>            Q * C, (Q**H) * C, D * Q, D * (Q**H)  are
 | 
						|
*>            computed using ZGEMM.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZUNHR_COL02( M, N, MB1, NB1, NB2, RESULT )
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER           M, N, MB1, NB1, NB2
 | 
						|
*     .. Return values ..
 | 
						|
      DOUBLE PRECISION  RESULT(6)
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Local allocatable arrays
 | 
						|
      COMPLEX*16      , ALLOCATABLE ::  A(:,:), AF(:,:), Q(:,:), R(:,:),
 | 
						|
     $                   WORK( : ), T1(:,:), T2(:,:), DIAG(:),
 | 
						|
     $                   C(:,:), CF(:,:), D(:,:), DF(:,:)
 | 
						|
      DOUBLE PRECISION, ALLOCATABLE :: RWORK(:)
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0 )
 | 
						|
      COMPLEX*16         CONE, CZERO
 | 
						|
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
 | 
						|
     $                     CZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            TESTZEROS
 | 
						|
      INTEGER            INFO, J, K, L, LWORK, NB2_UB, NRB
 | 
						|
      DOUBLE PRECISION   ANORM, EPS, RESID, CNORM, DNORM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
      COMPLEX*16         WORKQUERY( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
 | 
						|
      EXTERNAL           DLAMCH, ZLANGE, ZLANSY
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZLACPY, ZLARNV, ZLASET, ZGETSQRHRT,
 | 
						|
     $                   ZSCAL, ZGEMM, ZGEMQRT, ZHERK
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CEILING, DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      CHARACTER(LEN=32)  SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / SRMNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA ISEED / 1988, 1989, 1990, 1991 /
 | 
						|
*
 | 
						|
*     TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
 | 
						|
*
 | 
						|
      TESTZEROS = .FALSE.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      K = MIN( M, N )
 | 
						|
      L = MAX( M, N, 1)
 | 
						|
*
 | 
						|
*     Dynamically allocate local arrays
 | 
						|
*
 | 
						|
      ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
 | 
						|
     $           C(M,N), CF(M,N),
 | 
						|
     $           D(N,M), DF(N,M) )
 | 
						|
*
 | 
						|
*     Put random numbers into A and copy to AF
 | 
						|
*
 | 
						|
      DO J = 1, N
 | 
						|
         CALL ZLARNV( 2, ISEED, M, A( 1, J ) )
 | 
						|
      END DO
 | 
						|
      IF( TESTZEROS ) THEN
 | 
						|
         IF( M.GE.4 ) THEN
 | 
						|
            DO J = 1, N
 | 
						|
               CALL ZLARNV( 2, ISEED, M/2, A( M/4, J ) )
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      CALL ZLACPY( 'Full', M, N, A, M, AF, M )
 | 
						|
*
 | 
						|
*     Number of row blocks in ZLATSQR
 | 
						|
*
 | 
						|
      NRB = MAX( 1, CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) )
 | 
						|
*
 | 
						|
      ALLOCATE ( T1( NB1, N * NRB ) )
 | 
						|
      ALLOCATE ( T2( NB2, N ) )
 | 
						|
      ALLOCATE ( DIAG( N ) )
 | 
						|
*
 | 
						|
*     Begin determine LWORK for the array WORK and allocate memory.
 | 
						|
*
 | 
						|
*     ZGEMQRT requires NB2 to be bounded by N.
 | 
						|
*
 | 
						|
      NB2_UB = MIN( NB2, N)
 | 
						|
*
 | 
						|
*
 | 
						|
      CALL ZGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2,
 | 
						|
     $                 WORKQUERY, -1, INFO )
 | 
						|
*
 | 
						|
      LWORK = INT( WORKQUERY( 1 ) )
 | 
						|
*
 | 
						|
*     In ZGEMQRT, WORK is N*NB2_UB if SIDE = 'L',
 | 
						|
*                or  M*NB2_UB if SIDE = 'R'.
 | 
						|
*
 | 
						|
      LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M )
 | 
						|
*
 | 
						|
      ALLOCATE ( WORK( LWORK ) )
 | 
						|
*
 | 
						|
*     End allocate memory for WORK.
 | 
						|
*
 | 
						|
*
 | 
						|
*     Begin Householder reconstruction routines
 | 
						|
*
 | 
						|
*     Factor the matrix A in the array AF.
 | 
						|
*
 | 
						|
      SRNAMT = 'ZGETSQRHRT'
 | 
						|
      CALL ZGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2,
 | 
						|
     $                 WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*     End Householder reconstruction routines.
 | 
						|
*
 | 
						|
*
 | 
						|
*     Generate the m-by-m matrix Q
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, M )
 | 
						|
*
 | 
						|
      SRNAMT = 'ZGEMQRT'
 | 
						|
      CALL ZGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M,
 | 
						|
     $              WORK, INFO )
 | 
						|
*
 | 
						|
*     Copy R
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, M )
 | 
						|
*
 | 
						|
      CALL ZLACPY( 'Upper', M, N, AF, M, R, M )
 | 
						|
*
 | 
						|
*     TEST 1
 | 
						|
*     Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1)
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'C', 'N', M, N, M, -CONE, Q, M, A, M, CONE, R, M )
 | 
						|
*
 | 
						|
      ANORM = ZLANGE( '1', M, N, A, M, RWORK )
 | 
						|
      RESID = ZLANGE( '1', M, N, R, M, RWORK )
 | 
						|
      IF( ANORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM )
 | 
						|
      ELSE
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     TEST 2
 | 
						|
*     Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2)
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', M, M, CZERO, CONE, R, M )
 | 
						|
      CALL ZHERK( 'U', 'C', M, M, -CONE, Q, M, CONE, R, M )
 | 
						|
      RESID = ZLANSY( '1', 'Upper', M, R, M, RWORK )
 | 
						|
      RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) )
 | 
						|
*
 | 
						|
*     Generate random m-by-n matrix C
 | 
						|
*
 | 
						|
      DO J = 1, N
 | 
						|
         CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
 | 
						|
      END DO
 | 
						|
      CNORM = ZLANGE( '1', M, N, C, M, RWORK )
 | 
						|
      CALL ZLACPY( 'Full', M, N, C, M, CF, M )
 | 
						|
*
 | 
						|
*     Apply Q to C as Q*C = CF
 | 
						|
*
 | 
						|
      SRNAMT = 'ZGEMQRT'
 | 
						|
      CALL ZGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
 | 
						|
     $               WORK, INFO )
 | 
						|
*
 | 
						|
*     TEST 3
 | 
						|
*     Compute |CF - Q*C| / ( eps *  m * |C| )
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'N', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M )
 | 
						|
      RESID = ZLANGE( '1', M, N, CF, M, RWORK )
 | 
						|
      IF( CNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
 | 
						|
      ELSE
 | 
						|
         RESULT( 3 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Copy C into CF again
 | 
						|
*
 | 
						|
      CALL ZLACPY( 'Full', M, N, C, M, CF, M )
 | 
						|
*
 | 
						|
*     Apply Q to C as (Q**T)*C = CF
 | 
						|
*
 | 
						|
      SRNAMT = 'ZGEMQRT'
 | 
						|
      CALL ZGEMQRT( 'L', 'C', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
 | 
						|
     $               WORK, INFO )
 | 
						|
*
 | 
						|
*     TEST 4
 | 
						|
*     Compute |CF - (Q**T)*C| / ( eps * m * |C|)
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'C', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M )
 | 
						|
      RESID = ZLANGE( '1', M, N, CF, M, RWORK )
 | 
						|
      IF( CNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
 | 
						|
      ELSE
 | 
						|
         RESULT( 4 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Generate random n-by-m matrix D and a copy DF
 | 
						|
*
 | 
						|
      DO J = 1, M
 | 
						|
         CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
 | 
						|
      END DO
 | 
						|
      DNORM = ZLANGE( '1', N, M, D, N, RWORK )
 | 
						|
      CALL ZLACPY( 'Full', N, M, D, N, DF, N )
 | 
						|
*
 | 
						|
*     Apply Q to D as D*Q = DF
 | 
						|
*
 | 
						|
      SRNAMT = 'ZGEMQRT'
 | 
						|
      CALL ZGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
 | 
						|
     $               WORK, INFO )
 | 
						|
*
 | 
						|
*     TEST 5
 | 
						|
*     Compute |DF - D*Q| / ( eps * m * |D| )
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'N', 'N', N, M, M, -CONE, D, N, Q, M, CONE, DF, N )
 | 
						|
      RESID = ZLANGE( '1', N, M, DF, N, RWORK )
 | 
						|
      IF( DNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
 | 
						|
      ELSE
 | 
						|
         RESULT( 5 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Copy D into DF again
 | 
						|
*
 | 
						|
      CALL ZLACPY( 'Full', N, M, D, N, DF, N )
 | 
						|
*
 | 
						|
*     Apply Q to D as D*QT = DF
 | 
						|
*
 | 
						|
      SRNAMT = 'ZGEMQRT'
 | 
						|
      CALL ZGEMQRT( 'R', 'C', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
 | 
						|
     $               WORK, INFO )
 | 
						|
*
 | 
						|
*     TEST 6
 | 
						|
*     Compute |DF - D*(Q**T)| / ( eps * m * |D| )
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'N', 'C', N, M, M, -CONE, D, N, Q, M, CONE, DF, N )
 | 
						|
      RESID = ZLANGE( '1', N, M, DF, N, RWORK )
 | 
						|
      IF( DNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
 | 
						|
      ELSE
 | 
						|
         RESULT( 6 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Deallocate all arrays
 | 
						|
*
 | 
						|
      DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG,
 | 
						|
     $             C, D, CF, DF )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZUNHR_COL02
 | 
						|
*
 | 
						|
      END
 |