576 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			576 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SDRVPT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
 | 
						|
*                          E, B, X, XACT, WORK, RWORK, NOUT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            TSTERR
 | 
						|
*       INTEGER            NN, NOUT, NRHS
 | 
						|
*       REAL               THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            NVAL( * )
 | 
						|
*       REAL               A( * ), B( * ), D( * ), E( * ), RWORK( * ),
 | 
						|
*      $                   WORK( * ), X( * ), XACT( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SDRVPT tests SPTSV and -SVX.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          The matrix types to be used for testing.  Matrices of type j
 | 
						|
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | 
						|
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NN
 | 
						|
*> \verbatim
 | 
						|
*>          NN is INTEGER
 | 
						|
*>          The number of values of N contained in the vector NVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NVAL is INTEGER array, dimension (NN)
 | 
						|
*>          The values of the matrix dimension N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand side vectors to be generated for
 | 
						|
*>          each linear system.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is REAL
 | 
						|
*>          The threshold value for the test ratios.  A result is
 | 
						|
*>          included in the output file if RESULT >= THRESH.  To have
 | 
						|
*>          every test ratio printed, use THRESH = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TSTERR
 | 
						|
*> \verbatim
 | 
						|
*>          TSTERR is LOGICAL
 | 
						|
*>          Flag that indicates whether error exits are to be tested.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (NMAX*2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (NMAX*2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (NMAX*2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] XACT
 | 
						|
*> \verbatim
 | 
						|
*>          XACT is REAL array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension
 | 
						|
*>                      (NMAX*max(3,NRHS))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension
 | 
						|
*>                      (max(NMAX,2*NRHS))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUT is INTEGER
 | 
						|
*>          The unit number for output.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
 | 
						|
     $                   E, B, X, XACT, WORK, RWORK, NOUT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            TSTERR
 | 
						|
      INTEGER            NN, NOUT, NRHS
 | 
						|
      REAL               THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            NVAL( * )
 | 
						|
      REAL               A( * ), B( * ), D( * ), E( * ), RWORK( * ),
 | 
						|
     $                   WORK( * ), X( * ), XACT( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      INTEGER            NTYPES
 | 
						|
      PARAMETER          ( NTYPES = 12 )
 | 
						|
      INTEGER            NTESTS
 | 
						|
      PARAMETER          ( NTESTS = 6 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ZEROT
 | 
						|
      CHARACTER          DIST, FACT, TYPE
 | 
						|
      CHARACTER*3        PATH
 | 
						|
      INTEGER            I, IA, IFACT, IMAT, IN, INFO, IX, IZERO, J, K,
 | 
						|
     $                   K1, KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
 | 
						|
     $                   NRUN, NT
 | 
						|
      REAL               AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | 
						|
      REAL               RESULT( NTESTS ), Z( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      REAL               SASUM, SGET06, SLANST
 | 
						|
      EXTERNAL           ISAMAX, SASUM, SGET06, SLANST
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ALADHD, ALAERH, ALASVM, SCOPY, SERRVX, SGET04,
 | 
						|
     $                   SLACPY, SLAPTM, SLARNV, SLASET, SLATB4, SLATMS,
 | 
						|
     $                   SPTSV, SPTSVX, SPTT01, SPTT02, SPTT05, SPTTRF,
 | 
						|
     $                   SPTTRS, SSCAL
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      LOGICAL            LERR, OK
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
      INTEGER            INFOT, NUNIT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               ISEEDY / 0, 0, 0, 1 /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Single precision'
 | 
						|
      PATH( 2: 3 ) = 'PT'
 | 
						|
      NRUN = 0
 | 
						|
      NFAIL = 0
 | 
						|
      NERRS = 0
 | 
						|
      DO 10 I = 1, 4
 | 
						|
         ISEED( I ) = ISEEDY( I )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Test the error exits
 | 
						|
*
 | 
						|
      IF( TSTERR )
 | 
						|
     $   CALL SERRVX( PATH, NOUT )
 | 
						|
      INFOT = 0
 | 
						|
*
 | 
						|
      DO 120 IN = 1, NN
 | 
						|
*
 | 
						|
*        Do for each value of N in NVAL.
 | 
						|
*
 | 
						|
         N = NVAL( IN )
 | 
						|
         LDA = MAX( 1, N )
 | 
						|
         NIMAT = NTYPES
 | 
						|
         IF( N.LE.0 )
 | 
						|
     $      NIMAT = 1
 | 
						|
*
 | 
						|
         DO 110 IMAT = 1, NIMAT
 | 
						|
*
 | 
						|
*           Do the tests only if DOTYPE( IMAT ) is true.
 | 
						|
*
 | 
						|
            IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
 | 
						|
     $         GO TO 110
 | 
						|
*
 | 
						|
*           Set up parameters with SLATB4.
 | 
						|
*
 | 
						|
            CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | 
						|
     $                   COND, DIST )
 | 
						|
*
 | 
						|
            ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
 | 
						|
            IF( IMAT.LE.6 ) THEN
 | 
						|
*
 | 
						|
*              Type 1-6:  generate a symmetric tridiagonal matrix of
 | 
						|
*              known condition number in lower triangular band storage.
 | 
						|
*
 | 
						|
               SRNAMT = 'SLATMS'
 | 
						|
               CALL SLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
 | 
						|
     $                      ANORM, KL, KU, 'B', A, 2, WORK, INFO )
 | 
						|
*
 | 
						|
*              Check the error code from SLATMS.
 | 
						|
*
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', N, N, KL,
 | 
						|
     $                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
 | 
						|
                  GO TO 110
 | 
						|
               END IF
 | 
						|
               IZERO = 0
 | 
						|
*
 | 
						|
*              Copy the matrix to D and E.
 | 
						|
*
 | 
						|
               IA = 1
 | 
						|
               DO 20 I = 1, N - 1
 | 
						|
                  D( I ) = A( IA )
 | 
						|
                  E( I ) = A( IA+1 )
 | 
						|
                  IA = IA + 2
 | 
						|
   20          CONTINUE
 | 
						|
               IF( N.GT.0 )
 | 
						|
     $            D( N ) = A( IA )
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Type 7-12:  generate a diagonally dominant matrix with
 | 
						|
*              unknown condition number in the vectors D and E.
 | 
						|
*
 | 
						|
               IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
 | 
						|
*
 | 
						|
*                 Let D and E have values from [-1,1].
 | 
						|
*
 | 
						|
                  CALL SLARNV( 2, ISEED, N, D )
 | 
						|
                  CALL SLARNV( 2, ISEED, N-1, E )
 | 
						|
*
 | 
						|
*                 Make the tridiagonal matrix diagonally dominant.
 | 
						|
*
 | 
						|
                  IF( N.EQ.1 ) THEN
 | 
						|
                     D( 1 ) = ABS( D( 1 ) )
 | 
						|
                  ELSE
 | 
						|
                     D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
 | 
						|
                     D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
 | 
						|
                     DO 30 I = 2, N - 1
 | 
						|
                        D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
 | 
						|
     $                           ABS( E( I-1 ) )
 | 
						|
   30                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Scale D and E so the maximum element is ANORM.
 | 
						|
*
 | 
						|
                  IX = ISAMAX( N, D, 1 )
 | 
						|
                  DMAX = D( IX )
 | 
						|
                  CALL SSCAL( N, ANORM / DMAX, D, 1 )
 | 
						|
                  IF( N.GT.1 )
 | 
						|
     $               CALL SSCAL( N-1, ANORM / DMAX, E, 1 )
 | 
						|
*
 | 
						|
               ELSE IF( IZERO.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                 Reuse the last matrix by copying back the zeroed out
 | 
						|
*                 elements.
 | 
						|
*
 | 
						|
                  IF( IZERO.EQ.1 ) THEN
 | 
						|
                     D( 1 ) = Z( 2 )
 | 
						|
                     IF( N.GT.1 )
 | 
						|
     $                  E( 1 ) = Z( 3 )
 | 
						|
                  ELSE IF( IZERO.EQ.N ) THEN
 | 
						|
                     E( N-1 ) = Z( 1 )
 | 
						|
                     D( N ) = Z( 2 )
 | 
						|
                  ELSE
 | 
						|
                     E( IZERO-1 ) = Z( 1 )
 | 
						|
                     D( IZERO ) = Z( 2 )
 | 
						|
                     E( IZERO ) = Z( 3 )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              For types 8-10, set one row and column of the matrix to
 | 
						|
*              zero.
 | 
						|
*
 | 
						|
               IZERO = 0
 | 
						|
               IF( IMAT.EQ.8 ) THEN
 | 
						|
                  IZERO = 1
 | 
						|
                  Z( 2 ) = D( 1 )
 | 
						|
                  D( 1 ) = ZERO
 | 
						|
                  IF( N.GT.1 ) THEN
 | 
						|
                     Z( 3 ) = E( 1 )
 | 
						|
                     E( 1 ) = ZERO
 | 
						|
                  END IF
 | 
						|
               ELSE IF( IMAT.EQ.9 ) THEN
 | 
						|
                  IZERO = N
 | 
						|
                  IF( N.GT.1 ) THEN
 | 
						|
                     Z( 1 ) = E( N-1 )
 | 
						|
                     E( N-1 ) = ZERO
 | 
						|
                  END IF
 | 
						|
                  Z( 2 ) = D( N )
 | 
						|
                  D( N ) = ZERO
 | 
						|
               ELSE IF( IMAT.EQ.10 ) THEN
 | 
						|
                  IZERO = ( N+1 ) / 2
 | 
						|
                  IF( IZERO.GT.1 ) THEN
 | 
						|
                     Z( 1 ) = E( IZERO-1 )
 | 
						|
                     Z( 3 ) = E( IZERO )
 | 
						|
                     E( IZERO-1 ) = ZERO
 | 
						|
                     E( IZERO ) = ZERO
 | 
						|
                  END IF
 | 
						|
                  Z( 2 ) = D( IZERO )
 | 
						|
                  D( IZERO ) = ZERO
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Generate NRHS random solution vectors.
 | 
						|
*
 | 
						|
            IX = 1
 | 
						|
            DO 40 J = 1, NRHS
 | 
						|
               CALL SLARNV( 2, ISEED, N, XACT( IX ) )
 | 
						|
               IX = IX + LDA
 | 
						|
   40       CONTINUE
 | 
						|
*
 | 
						|
*           Set the right hand side.
 | 
						|
*
 | 
						|
            CALL SLAPTM( N, NRHS, ONE, D, E, XACT, LDA, ZERO, B, LDA )
 | 
						|
*
 | 
						|
            DO 100 IFACT = 1, 2
 | 
						|
               IF( IFACT.EQ.1 ) THEN
 | 
						|
                  FACT = 'F'
 | 
						|
               ELSE
 | 
						|
                  FACT = 'N'
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Compute the condition number for comparison with
 | 
						|
*              the value returned by SPTSVX.
 | 
						|
*
 | 
						|
               IF( ZEROT ) THEN
 | 
						|
                  IF( IFACT.EQ.1 )
 | 
						|
     $               GO TO 100
 | 
						|
                  RCONDC = ZERO
 | 
						|
*
 | 
						|
               ELSE IF( IFACT.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                 Compute the 1-norm of A.
 | 
						|
*
 | 
						|
                  ANORM = SLANST( '1', N, D, E )
 | 
						|
*
 | 
						|
                  CALL SCOPY( N, D, 1, D( N+1 ), 1 )
 | 
						|
                  IF( N.GT.1 )
 | 
						|
     $               CALL SCOPY( N-1, E, 1, E( N+1 ), 1 )
 | 
						|
*
 | 
						|
*                 Factor the matrix A.
 | 
						|
*
 | 
						|
                  CALL SPTTRF( N, D( N+1 ), E( N+1 ), INFO )
 | 
						|
*
 | 
						|
*                 Use SPTTRS to solve for one column at a time of
 | 
						|
*                 inv(A), computing the maximum column sum as we go.
 | 
						|
*
 | 
						|
                  AINVNM = ZERO
 | 
						|
                  DO 60 I = 1, N
 | 
						|
                     DO 50 J = 1, N
 | 
						|
                        X( J ) = ZERO
 | 
						|
   50                CONTINUE
 | 
						|
                     X( I ) = ONE
 | 
						|
                     CALL SPTTRS( N, 1, D( N+1 ), E( N+1 ), X, LDA,
 | 
						|
     $                            INFO )
 | 
						|
                     AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
 | 
						|
   60             CONTINUE
 | 
						|
*
 | 
						|
*                 Compute the 1-norm condition number of A.
 | 
						|
*
 | 
						|
                  IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
                     RCONDC = ONE
 | 
						|
                  ELSE
 | 
						|
                     RCONDC = ( ONE / ANORM ) / AINVNM
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( IFACT.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*                 --- Test SPTSV --
 | 
						|
*
 | 
						|
                  CALL SCOPY( N, D, 1, D( N+1 ), 1 )
 | 
						|
                  IF( N.GT.1 )
 | 
						|
     $               CALL SCOPY( N-1, E, 1, E( N+1 ), 1 )
 | 
						|
                  CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
 | 
						|
*
 | 
						|
*                 Factor A as L*D*L' and solve the system A*X = B.
 | 
						|
*
 | 
						|
                  SRNAMT = 'SPTSV '
 | 
						|
                  CALL SPTSV( N, NRHS, D( N+1 ), E( N+1 ), X, LDA,
 | 
						|
     $                        INFO )
 | 
						|
*
 | 
						|
*                 Check error code from SPTSV .
 | 
						|
*
 | 
						|
                  IF( INFO.NE.IZERO )
 | 
						|
     $               CALL ALAERH( PATH, 'SPTSV ', INFO, IZERO, ' ', N,
 | 
						|
     $                            N, 1, 1, NRHS, IMAT, NFAIL, NERRS,
 | 
						|
     $                            NOUT )
 | 
						|
                  NT = 0
 | 
						|
                  IF( IZERO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*                    Check the factorization by computing the ratio
 | 
						|
*                       norm(L*D*L' - A) / (n * norm(A) * EPS )
 | 
						|
*
 | 
						|
                     CALL SPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
 | 
						|
     $                            RESULT( 1 ) )
 | 
						|
*
 | 
						|
*                    Compute the residual in the solution.
 | 
						|
*
 | 
						|
                     CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | 
						|
                     CALL SPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
 | 
						|
     $                            RESULT( 2 ) )
 | 
						|
*
 | 
						|
*                    Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                     CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                            RESULT( 3 ) )
 | 
						|
                     NT = 3
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Print information about the tests that did not pass
 | 
						|
*                 the threshold.
 | 
						|
*
 | 
						|
                  DO 70 K = 1, NT
 | 
						|
                     IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                     CALL ALADHD( NOUT, PATH )
 | 
						|
                        WRITE( NOUT, FMT = 9999 )'SPTSV ', N, IMAT, K,
 | 
						|
     $                     RESULT( K )
 | 
						|
                        NFAIL = NFAIL + 1
 | 
						|
                     END IF
 | 
						|
   70             CONTINUE
 | 
						|
                  NRUN = NRUN + NT
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              --- Test SPTSVX ---
 | 
						|
*
 | 
						|
               IF( IFACT.GT.1 ) THEN
 | 
						|
*
 | 
						|
*                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero.
 | 
						|
*
 | 
						|
                  DO 80 I = 1, N - 1
 | 
						|
                     D( N+I ) = ZERO
 | 
						|
                     E( N+I ) = ZERO
 | 
						|
   80             CONTINUE
 | 
						|
                  IF( N.GT.0 )
 | 
						|
     $               D( N+N ) = ZERO
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               CALL SLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
 | 
						|
*
 | 
						|
*              Solve the system and compute the condition number and
 | 
						|
*              error bounds using SPTSVX.
 | 
						|
*
 | 
						|
               SRNAMT = 'SPTSVX'
 | 
						|
               CALL SPTSVX( FACT, N, NRHS, D, E, D( N+1 ), E( N+1 ), B,
 | 
						|
     $                      LDA, X, LDA, RCOND, RWORK, RWORK( NRHS+1 ),
 | 
						|
     $                      WORK, INFO )
 | 
						|
*
 | 
						|
*              Check the error code from SPTSVX.
 | 
						|
*
 | 
						|
               IF( INFO.NE.IZERO )
 | 
						|
     $            CALL ALAERH( PATH, 'SPTSVX', INFO, IZERO, FACT, N, N,
 | 
						|
     $                         1, 1, NRHS, IMAT, NFAIL, NERRS, NOUT )
 | 
						|
               IF( IZERO.EQ.0 ) THEN
 | 
						|
                  IF( IFACT.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*                    Check the factorization by computing the ratio
 | 
						|
*                       norm(L*D*L' - A) / (n * norm(A) * EPS )
 | 
						|
*
 | 
						|
                     K1 = 1
 | 
						|
                     CALL SPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
 | 
						|
     $                            RESULT( 1 ) )
 | 
						|
                  ELSE
 | 
						|
                     K1 = 2
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Compute the residual in the solution.
 | 
						|
*
 | 
						|
                  CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | 
						|
                  CALL SPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
 | 
						|
     $                         RESULT( 2 ) )
 | 
						|
*
 | 
						|
*                 Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                  CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                         RESULT( 3 ) )
 | 
						|
*
 | 
						|
*                 Check error bounds from iterative refinement.
 | 
						|
*
 | 
						|
                  CALL SPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
 | 
						|
     $                         RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
 | 
						|
               ELSE
 | 
						|
                  K1 = 6
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Check the reciprocal of the condition number.
 | 
						|
*
 | 
						|
               RESULT( 6 ) = SGET06( RCOND, RCONDC )
 | 
						|
*
 | 
						|
*              Print information about the tests that did not pass
 | 
						|
*              the threshold.
 | 
						|
*
 | 
						|
               DO 90 K = K1, 6
 | 
						|
                  IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                  CALL ALADHD( NOUT, PATH )
 | 
						|
                     WRITE( NOUT, FMT = 9998 )'SPTSVX', FACT, N, IMAT,
 | 
						|
     $                  K, RESULT( K )
 | 
						|
                     NFAIL = NFAIL + 1
 | 
						|
                  END IF
 | 
						|
   90          CONTINUE
 | 
						|
               NRUN = NRUN + 7 - K1
 | 
						|
  100       CONTINUE
 | 
						|
  110    CONTINUE
 | 
						|
  120 CONTINUE
 | 
						|
*
 | 
						|
*     Print a summary of the results.
 | 
						|
*
 | 
						|
      CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | 
						|
*
 | 
						|
 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
 | 
						|
     $      ', ratio = ', G12.5 )
 | 
						|
 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', N =', I5, ', type ', I2,
 | 
						|
     $      ', test ', I2, ', ratio = ', G12.5 )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SDRVPT
 | 
						|
*
 | 
						|
      END
 |