380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAG2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlag2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlag2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlag2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
 | |
| *                         WR2, WI )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDB
 | |
| *       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
 | |
| *> problem  A - w B, with scaling as necessary to avoid over-/underflow.
 | |
| *>
 | |
| *> The scaling factor "s" results in a modified eigenvalue equation
 | |
| *>
 | |
| *>     s A - w B
 | |
| *>
 | |
| *> where  s  is a non-negative scaling factor chosen so that  w,  w B,
 | |
| *> and  s A  do not overflow and, if possible, do not underflow, either.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA, 2)
 | |
| *>          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm
 | |
| *>          is less than 1/SAFMIN.  Entries less than
 | |
| *>          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB, 2)
 | |
| *>          On entry, the 2 x 2 upper triangular matrix B.  It is
 | |
| *>          assumed that the one-norm of B is less than 1/SAFMIN.  The
 | |
| *>          diagonals should be at least sqrt(SAFMIN) times the largest
 | |
| *>          element of B (in absolute value); if a diagonal is smaller
 | |
| *>          than that, then  +/- sqrt(SAFMIN) will be used instead of
 | |
| *>          that diagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SAFMIN
 | |
| *> \verbatim
 | |
| *>          SAFMIN is DOUBLE PRECISION
 | |
| *>          The smallest positive number s.t. 1/SAFMIN does not
 | |
| *>          overflow.  (This should always be DLAMCH('S') -- it is an
 | |
| *>          argument in order to avoid having to call DLAMCH frequently.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE1
 | |
| *> \verbatim
 | |
| *>          SCALE1 is DOUBLE PRECISION
 | |
| *>          A scaling factor used to avoid over-/underflow in the
 | |
| *>          eigenvalue equation which defines the first eigenvalue.  If
 | |
| *>          the eigenvalues are complex, then the eigenvalues are
 | |
| *>          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the
 | |
| *>          exponent range of the machine), SCALE1=SCALE2, and SCALE1
 | |
| *>          will always be positive.  If the eigenvalues are real, then
 | |
| *>          the first (real) eigenvalue is  WR1 / SCALE1 , but this may
 | |
| *>          overflow or underflow, and in fact, SCALE1 may be zero or
 | |
| *>          less than the underflow threshhold if the exact eigenvalue
 | |
| *>          is sufficiently large.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE2
 | |
| *> \verbatim
 | |
| *>          SCALE2 is DOUBLE PRECISION
 | |
| *>          A scaling factor used to avoid over-/underflow in the
 | |
| *>          eigenvalue equation which defines the second eigenvalue.  If
 | |
| *>          the eigenvalues are complex, then SCALE2=SCALE1.  If the
 | |
| *>          eigenvalues are real, then the second (real) eigenvalue is
 | |
| *>          WR2 / SCALE2 , but this may overflow or underflow, and in
 | |
| *>          fact, SCALE2 may be zero or less than the underflow
 | |
| *>          threshhold if the exact eigenvalue is sufficiently large.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR1
 | |
| *> \verbatim
 | |
| *>          WR1 is DOUBLE PRECISION
 | |
| *>          If the eigenvalue is real, then WR1 is SCALE1 times the
 | |
| *>          eigenvalue closest to the (2,2) element of A B**(-1).  If the
 | |
| *>          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
 | |
| *>          part of the eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR2
 | |
| *> \verbatim
 | |
| *>          WR2 is DOUBLE PRECISION
 | |
| *>          If the eigenvalue is real, then WR2 is SCALE2 times the
 | |
| *>          other eigenvalue.  If the eigenvalue is complex, then
 | |
| *>          WR1=WR2 is SCALE1 times the real part of the eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI
 | |
| *> \verbatim
 | |
| *>          WI is DOUBLE PRECISION
 | |
| *>          If the eigenvalue is real, then WI is zero.  If the
 | |
| *>          eigenvalue is complex, then WI is SCALE1 times the imaginary
 | |
| *>          part of the eigenvalues.  WI will always be non-negative.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
 | |
|      $                  WR2, WI )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDB
 | |
|       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
 | |
|       DOUBLE PRECISION   HALF
 | |
|       PARAMETER          ( HALF = ONE / TWO )
 | |
|       DOUBLE PRECISION   FUZZY1
 | |
|       PARAMETER          ( FUZZY1 = ONE+1.0D-5 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
 | |
|      $                   AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
 | |
|      $                   BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
 | |
|      $                   DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
 | |
|      $                   SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
 | |
|      $                   WSCALE, WSIZE, WSMALL
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RTMIN = SQRT( SAFMIN )
 | |
|       RTMAX = ONE / RTMIN
 | |
|       SAFMAX = ONE / SAFMIN
 | |
| *
 | |
| *     Scale A
 | |
| *
 | |
|       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
 | |
|      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
 | |
|       ASCALE = ONE / ANORM
 | |
|       A11 = ASCALE*A( 1, 1 )
 | |
|       A21 = ASCALE*A( 2, 1 )
 | |
|       A12 = ASCALE*A( 1, 2 )
 | |
|       A22 = ASCALE*A( 2, 2 )
 | |
| *
 | |
| *     Perturb B if necessary to insure non-singularity
 | |
| *
 | |
|       B11 = B( 1, 1 )
 | |
|       B12 = B( 1, 2 )
 | |
|       B22 = B( 2, 2 )
 | |
|       BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
 | |
|       IF( ABS( B11 ).LT.BMIN )
 | |
|      $   B11 = SIGN( BMIN, B11 )
 | |
|       IF( ABS( B22 ).LT.BMIN )
 | |
|      $   B22 = SIGN( BMIN, B22 )
 | |
| *
 | |
| *     Scale B
 | |
| *
 | |
|       BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
 | |
|       BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
 | |
|       BSCALE = ONE / BSIZE
 | |
|       B11 = B11*BSCALE
 | |
|       B12 = B12*BSCALE
 | |
|       B22 = B22*BSCALE
 | |
| *
 | |
| *     Compute larger eigenvalue by method described by C. van Loan
 | |
| *
 | |
| *     ( AS is A shifted by -SHIFT*B )
 | |
| *
 | |
|       BINV11 = ONE / B11
 | |
|       BINV22 = ONE / B22
 | |
|       S1 = A11*BINV11
 | |
|       S2 = A22*BINV22
 | |
|       IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
 | |
|          AS12 = A12 - S1*B12
 | |
|          AS22 = A22 - S1*B22
 | |
|          SS = A21*( BINV11*BINV22 )
 | |
|          ABI22 = AS22*BINV22 - SS*B12
 | |
|          PP = HALF*ABI22
 | |
|          SHIFT = S1
 | |
|       ELSE
 | |
|          AS12 = A12 - S2*B12
 | |
|          AS11 = A11 - S2*B11
 | |
|          SS = A21*( BINV11*BINV22 )
 | |
|          ABI22 = -SS*B12
 | |
|          PP = HALF*( AS11*BINV11+ABI22 )
 | |
|          SHIFT = S2
 | |
|       END IF
 | |
|       QQ = SS*AS12
 | |
|       IF( ABS( PP*RTMIN ).GE.ONE ) THEN
 | |
|          DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
 | |
|          R = SQRT( ABS( DISCR ) )*RTMAX
 | |
|       ELSE
 | |
|          IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
 | |
|             DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
 | |
|             R = SQRT( ABS( DISCR ) )*RTMIN
 | |
|          ELSE
 | |
|             DISCR = PP**2 + QQ
 | |
|             R = SQRT( ABS( DISCR ) )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Note: the test of R in the following IF is to cover the case when
 | |
| *           DISCR is small and negative and is flushed to zero during
 | |
| *           the calculation of R.  On machines which have a consistent
 | |
| *           flush-to-zero threshhold and handle numbers above that
 | |
| *           threshhold correctly, it would not be necessary.
 | |
| *
 | |
|       IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
 | |
|          SUM = PP + SIGN( R, PP )
 | |
|          DIFF = PP - SIGN( R, PP )
 | |
|          WBIG = SHIFT + SUM
 | |
| *
 | |
| *        Compute smaller eigenvalue
 | |
| *
 | |
|          WSMALL = SHIFT + DIFF
 | |
|          IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
 | |
|             WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
 | |
|             WSMALL = WDET / WBIG
 | |
|          END IF
 | |
| *
 | |
| *        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
 | |
| *        for WR1.
 | |
| *
 | |
|          IF( PP.GT.ABI22 ) THEN
 | |
|             WR1 = MIN( WBIG, WSMALL )
 | |
|             WR2 = MAX( WBIG, WSMALL )
 | |
|          ELSE
 | |
|             WR1 = MAX( WBIG, WSMALL )
 | |
|             WR2 = MIN( WBIG, WSMALL )
 | |
|          END IF
 | |
|          WI = ZERO
 | |
|       ELSE
 | |
| *
 | |
| *        Complex eigenvalues
 | |
| *
 | |
|          WR1 = SHIFT + PP
 | |
|          WR2 = WR1
 | |
|          WI = R
 | |
|       END IF
 | |
| *
 | |
| *     Further scaling to avoid underflow and overflow in computing
 | |
| *     SCALE1 and overflow in computing w*B.
 | |
| *
 | |
| *     This scale factor (WSCALE) is bounded from above using C1 and C2,
 | |
| *     and from below using C3 and C4.
 | |
| *        C1 implements the condition  s A  must never overflow.
 | |
| *        C2 implements the condition  w B  must never overflow.
 | |
| *        C3, with C2,
 | |
| *           implement the condition that s A - w B must never overflow.
 | |
| *        C4 implements the condition  s    should not underflow.
 | |
| *        C5 implements the condition  max(s,|w|) should be at least 2.
 | |
| *
 | |
|       C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
 | |
|       C2 = SAFMIN*MAX( ONE, BNORM )
 | |
|       C3 = BSIZE*SAFMIN
 | |
|       IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
 | |
|          C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
 | |
|       ELSE
 | |
|          C4 = ONE
 | |
|       END IF
 | |
|       IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
 | |
|          C5 = MIN( ONE, ASCALE*BSIZE )
 | |
|       ELSE
 | |
|          C5 = ONE
 | |
|       END IF
 | |
| *
 | |
| *     Scale first eigenvalue
 | |
| *
 | |
|       WABS = ABS( WR1 ) + ABS( WI )
 | |
|       WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
 | |
|      $        MIN( C4, HALF*MAX( WABS, C5 ) ) )
 | |
|       IF( WSIZE.NE.ONE ) THEN
 | |
|          WSCALE = ONE / WSIZE
 | |
|          IF( WSIZE.GT.ONE ) THEN
 | |
|             SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
 | |
|      $               MIN( ASCALE, BSIZE )
 | |
|          ELSE
 | |
|             SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
 | |
|      $               MAX( ASCALE, BSIZE )
 | |
|          END IF
 | |
|          WR1 = WR1*WSCALE
 | |
|          IF( WI.NE.ZERO ) THEN
 | |
|             WI = WI*WSCALE
 | |
|             WR2 = WR1
 | |
|             SCALE2 = SCALE1
 | |
|          END IF
 | |
|       ELSE
 | |
|          SCALE1 = ASCALE*BSIZE
 | |
|          SCALE2 = SCALE1
 | |
|       END IF
 | |
| *
 | |
| *     Scale second eigenvalue (if real)
 | |
| *
 | |
|       IF( WI.EQ.ZERO ) THEN
 | |
|          WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
 | |
|      $           MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
 | |
|          IF( WSIZE.NE.ONE ) THEN
 | |
|             WSCALE = ONE / WSIZE
 | |
|             IF( WSIZE.GT.ONE ) THEN
 | |
|                SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
 | |
|      $                  MIN( ASCALE, BSIZE )
 | |
|             ELSE
 | |
|                SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
 | |
|      $                  MAX( ASCALE, BSIZE )
 | |
|             END IF
 | |
|             WR2 = WR2*WSCALE
 | |
|          ELSE
 | |
|             SCALE2 = ASCALE*BSIZE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     End of DLAG2
 | |
| *
 | |
|       RETURN
 | |
|       END
 |