295 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			295 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLAHRD + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahrd.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahrd.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahrd.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            K, LDA, LDT, LDY, N, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
 | |
| *      $                   Y( LDY, NB )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)
 | |
| *> matrix A so that elements below the k-th subdiagonal are zero. The
 | |
| *> reduction is performed by a unitary similarity transformation
 | |
| *> Q**H * A * Q. The routine returns the matrices V and T which determine
 | |
| *> Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T.
 | |
| *>
 | |
| *> This is an OBSOLETE auxiliary routine. 
 | |
| *> This routine will be 'deprecated' in a  future release.
 | |
| *> Please use the new routine CLAHR2 instead.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The offset for the reduction. Elements below the k-th
 | |
| *>          subdiagonal in the first NB columns are reduced to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The number of columns to be reduced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N-K+1)
 | |
| *>          On entry, the n-by-(n-k+1) general matrix A.
 | |
| *>          On exit, the elements on and above the k-th subdiagonal in
 | |
| *>          the first NB columns are overwritten with the corresponding
 | |
| *>          elements of the reduced matrix; the elements below the k-th
 | |
| *>          subdiagonal, with the array TAU, represent the matrix Q as a
 | |
| *>          product of elementary reflectors. The other columns of A are
 | |
| *>          unchanged. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX array, dimension (NB)
 | |
| *>          The scalar factors of the elementary reflectors. See Further
 | |
| *>          Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension (LDT,NB)
 | |
| *>          The upper triangular matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Y
 | |
| *> \verbatim
 | |
| *>          Y is COMPLEX array, dimension (LDY,NB)
 | |
| *>          The n-by-nb matrix Y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDY
 | |
| *> \verbatim
 | |
| *>          LDY is INTEGER
 | |
| *>          The leading dimension of the array Y. LDY >= max(1,N).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of nb elementary reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(nb).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**H
 | |
| *>
 | |
| *>  where tau is a complex scalar, and v is a complex vector with
 | |
| *>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
 | |
| *>  A(i+k+1:n,i), and tau in TAU(i).
 | |
| *>
 | |
| *>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
 | |
| *>  V which is needed, with T and Y, to apply the transformation to the
 | |
| *>  unreduced part of the matrix, using an update of the form:
 | |
| *>  A := (I - V*T*V**H) * (A - Y*V**H).
 | |
| *>
 | |
| *>  The contents of A on exit are illustrated by the following example
 | |
| *>  with n = 7, k = 3 and nb = 2:
 | |
| *>
 | |
| *>     ( a   h   a   a   a )
 | |
| *>     ( a   h   a   a   a )
 | |
| *>     ( a   h   a   a   a )
 | |
| *>     ( h   h   a   a   a )
 | |
| *>     ( v1  h   a   a   a )
 | |
| *>     ( v1  v2  a   a   a )
 | |
| *>     ( v1  v2  a   a   a )
 | |
| *>
 | |
| *>  where a denotes an element of the original matrix A, h denotes a
 | |
| *>  modified element of the upper Hessenberg matrix H, and vi denotes an
 | |
| *>  element of the vector defining H(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            K, LDA, LDT, LDY, N, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
 | |
|      $                   Y( LDY, NB )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ZERO, ONE
 | |
|       PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   ONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       COMPLEX            EI
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CAXPY, CCOPY, CGEMV, CLACGV, CLARFG, CSCAL,
 | |
|      $                   CTRMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.1 )
 | |
|      $   RETURN
 | |
| *
 | |
|       DO 10 I = 1, NB
 | |
|          IF( I.GT.1 ) THEN
 | |
| *
 | |
| *           Update A(1:n,i)
 | |
| *
 | |
| *           Compute i-th column of A - Y * V**H
 | |
| *
 | |
|             CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
 | |
|             CALL CGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
 | |
|      $                  A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
 | |
|             CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
 | |
| *
 | |
| *           Apply I - V * T**H * V**H to this column (call it b) from the
 | |
| *           left, using the last column of T as workspace
 | |
| *
 | |
| *           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
 | |
| *                    ( V2 )             ( b2 )
 | |
| *
 | |
| *           where V1 is unit lower triangular
 | |
| *
 | |
| *           w := V1**H * b1
 | |
| *
 | |
|             CALL CCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
 | |
|             CALL CTRMV( 'Lower', 'Conjugate transpose', 'Unit', I-1,
 | |
|      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
 | |
| *
 | |
| *           w := w + V2**H *b2
 | |
| *
 | |
|             CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, ONE,
 | |
|      $                  A( K+I, 1 ), LDA, A( K+I, I ), 1, ONE,
 | |
|      $                  T( 1, NB ), 1 )
 | |
| *
 | |
| *           w := T**H *w
 | |
| *
 | |
|             CALL CTRMV( 'Upper', 'Conjugate transpose', 'Non-unit', I-1,
 | |
|      $                  T, LDT, T( 1, NB ), 1 )
 | |
| *
 | |
| *           b2 := b2 - V2*w
 | |
| *
 | |
|             CALL CGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
 | |
|      $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
 | |
| *
 | |
| *           b1 := b1 - V1*w
 | |
| *
 | |
|             CALL CTRMV( 'Lower', 'No transpose', 'Unit', I-1,
 | |
|      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
 | |
|             CALL CAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
 | |
| *
 | |
|             A( K+I-1, I-1 ) = EI
 | |
|          END IF
 | |
| *
 | |
| *        Generate the elementary reflector H(i) to annihilate
 | |
| *        A(k+i+1:n,i)
 | |
| *
 | |
|          EI = A( K+I, I )
 | |
|          CALL CLARFG( N-K-I+1, EI, A( MIN( K+I+1, N ), I ), 1,
 | |
|      $                TAU( I ) )
 | |
|          A( K+I, I ) = ONE
 | |
| *
 | |
| *        Compute  Y(1:n,i)
 | |
| *
 | |
|          CALL CGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
 | |
|      $               A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
 | |
|          CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, ONE,
 | |
|      $               A( K+I, 1 ), LDA, A( K+I, I ), 1, ZERO, T( 1, I ),
 | |
|      $               1 )
 | |
|          CALL CGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
 | |
|      $               ONE, Y( 1, I ), 1 )
 | |
|          CALL CSCAL( N, TAU( I ), Y( 1, I ), 1 )
 | |
| *
 | |
| *        Compute T(1:i,i)
 | |
| *
 | |
|          CALL CSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
 | |
|          CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
 | |
|      $               T( 1, I ), 1 )
 | |
|          T( I, I ) = TAU( I )
 | |
| *
 | |
|    10 CONTINUE
 | |
|       A( K+NB, NB ) = EI
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAHRD
 | |
| *
 | |
|       END
 |