239 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			239 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DPPEQU
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DPPEQU + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dppequ.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dppequ.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dppequ.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       DOUBLE PRECISION   AMAX, SCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   AP( * ), S( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DPPEQU computes row and column scalings intended to equilibrate a
 | 
						|
*> symmetric positive definite matrix A in packed storage and reduce
 | 
						|
*> its condition number (with respect to the two-norm).  S contains the
 | 
						|
*> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
 | 
						|
*> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
 | 
						|
*> This choice of S puts the condition number of B within a factor N of
 | 
						|
*> the smallest possible condition number over all possible diagonal
 | 
						|
*> scalings.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          The upper or lower triangle of the symmetric matrix A, packed
 | 
						|
*>          columnwise in a linear array.  The j-th column of A is stored
 | 
						|
*>          in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          If INFO = 0, S contains the scale factors for A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCOND
 | 
						|
*> \verbatim
 | 
						|
*>          SCOND is DOUBLE PRECISION
 | 
						|
*>          If INFO = 0, S contains the ratio of the smallest S(i) to
 | 
						|
*>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 | 
						|
*>          large nor too small, it is not worth scaling by S.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AMAX
 | 
						|
*> \verbatim
 | 
						|
*>          AMAX is DOUBLE PRECISION
 | 
						|
*>          Absolute value of largest matrix element.  If AMAX is very
 | 
						|
*>          close to overflow or very close to underflow, the matrix
 | 
						|
*>          should be scaled.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, N
 | 
						|
      DOUBLE PRECISION   AMAX, SCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   AP( * ), S( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I, JJ
 | 
						|
      DOUBLE PRECISION   SMIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DPPEQU', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         SCOND = ONE
 | 
						|
         AMAX = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize SMIN and AMAX.
 | 
						|
*
 | 
						|
      S( 1 ) = AP( 1 )
 | 
						|
      SMIN = S( 1 )
 | 
						|
      AMAX = S( 1 )
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        UPLO = 'U':  Upper triangle of A is stored.
 | 
						|
*        Find the minimum and maximum diagonal elements.
 | 
						|
*
 | 
						|
         JJ = 1
 | 
						|
         DO 10 I = 2, N
 | 
						|
            JJ = JJ + I
 | 
						|
            S( I ) = AP( JJ )
 | 
						|
            SMIN = MIN( SMIN, S( I ) )
 | 
						|
            AMAX = MAX( AMAX, S( I ) )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        UPLO = 'L':  Lower triangle of A is stored.
 | 
						|
*        Find the minimum and maximum diagonal elements.
 | 
						|
*
 | 
						|
         JJ = 1
 | 
						|
         DO 20 I = 2, N
 | 
						|
            JJ = JJ + N - I + 2
 | 
						|
            S( I ) = AP( JJ )
 | 
						|
            SMIN = MIN( SMIN, S( I ) )
 | 
						|
            AMAX = MAX( AMAX, S( I ) )
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( SMIN.LE.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Find the first non-positive diagonal element and return.
 | 
						|
*
 | 
						|
         DO 30 I = 1, N
 | 
						|
            IF( S( I ).LE.ZERO ) THEN
 | 
						|
               INFO = I
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Set the scale factors to the reciprocals
 | 
						|
*        of the diagonal elements.
 | 
						|
*
 | 
						|
         DO 40 I = 1, N
 | 
						|
            S( I ) = ONE / SQRT( S( I ) )
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
*        Compute SCOND = min(S(I)) / max(S(I))
 | 
						|
*
 | 
						|
         SCOND = SQRT( SMIN ) / SQRT( AMAX )
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DPPEQU
 | 
						|
*
 | 
						|
      END
 |