338 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZHEMV
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       COMPLEX*16 ALPHA,BETA
 | 
						|
*       INTEGER INCX,INCY,LDA,N
 | 
						|
*       CHARACTER UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16 A(LDA,*),X(*),Y(*)
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZHEMV  performs the matrix-vector  operation
 | 
						|
*>
 | 
						|
*>    y := alpha*A*x + beta*y,
 | 
						|
*>
 | 
						|
*> where alpha and beta are scalars, x and y are n element vectors and
 | 
						|
*> A is an n by n hermitian matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the upper or lower
 | 
						|
*>           triangular part of the array A is to be referenced as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | 
						|
*>                                  is to be referenced.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | 
						|
*>                                  is to be referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the order of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX*16
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array of DIMENSION ( LDA, n ).
 | 
						|
*>           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | 
						|
*>           upper triangular part of the array A must contain the upper
 | 
						|
*>           triangular part of the hermitian matrix and the strictly
 | 
						|
*>           lower triangular part of A is not referenced.
 | 
						|
*>           Before entry with UPLO = 'L' or 'l', the leading n by n
 | 
						|
*>           lower triangular part of the array A must contain the lower
 | 
						|
*>           triangular part of the hermitian matrix and the strictly
 | 
						|
*>           upper triangular part of A is not referenced.
 | 
						|
*>           Note that the imaginary parts of the diagonal elements need
 | 
						|
*>           not be set and are assumed to be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in the calling (sub) program. LDA must be at least
 | 
						|
*>           max( 1, n ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array of dimension at least
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | 
						|
*>           Before entry, the incremented array X must contain the n
 | 
						|
*>           element vector x.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is COMPLEX*16
 | 
						|
*>           On entry, BETA specifies the scalar beta. When BETA is
 | 
						|
*>           supplied as zero then Y need not be set on input.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is COMPLEX*16 array of dimension at least
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCY ) ).
 | 
						|
*>           Before entry, the incremented array Y must contain the n
 | 
						|
*>           element vector y. On exit, Y is overwritten by the updated
 | 
						|
*>           vector y.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCY
 | 
						|
*> \verbatim
 | 
						|
*>          INCY is INTEGER
 | 
						|
*>           On entry, INCY specifies the increment for the elements of
 | 
						|
*>           Y. INCY must not be zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_blas_level2
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 2 Blas routine.
 | 
						|
*>  The vector and matrix arguments are not referenced when N = 0, or M = 0
 | 
						|
*>
 | 
						|
*>  -- Written on 22-October-1986.
 | 
						|
*>     Jack Dongarra, Argonne National Lab.
 | 
						|
*>     Jeremy Du Croz, Nag Central Office.
 | 
						|
*>     Sven Hammarling, Nag Central Office.
 | 
						|
*>     Richard Hanson, Sandia National Labs.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level2 routine (version 3.4.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      COMPLEX*16 ALPHA,BETA
 | 
						|
      INTEGER INCX,INCY,LDA,N
 | 
						|
      CHARACTER UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16 A(LDA,*),X(*),Y(*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16 ONE
 | 
						|
      PARAMETER (ONE= (1.0D+0,0.0D+0))
 | 
						|
      COMPLEX*16 ZERO
 | 
						|
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX*16 TEMP1,TEMP2
 | 
						|
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC DBLE,DCONJG,MAX
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF (LDA.LT.MAX(1,N)) THEN
 | 
						|
          INFO = 5
 | 
						|
      ELSE IF (INCX.EQ.0) THEN
 | 
						|
          INFO = 7
 | 
						|
      ELSE IF (INCY.EQ.0) THEN
 | 
						|
          INFO = 10
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('ZHEMV ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | 
						|
*
 | 
						|
*     Set up the start points in  X  and  Y.
 | 
						|
*
 | 
						|
      IF (INCX.GT.0) THEN
 | 
						|
          KX = 1
 | 
						|
      ELSE
 | 
						|
          KX = 1 - (N-1)*INCX
 | 
						|
      END IF
 | 
						|
      IF (INCY.GT.0) THEN
 | 
						|
          KY = 1
 | 
						|
      ELSE
 | 
						|
          KY = 1 - (N-1)*INCY
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of A are
 | 
						|
*     accessed sequentially with one pass through the triangular part
 | 
						|
*     of A.
 | 
						|
*
 | 
						|
*     First form  y := beta*y.
 | 
						|
*
 | 
						|
      IF (BETA.NE.ONE) THEN
 | 
						|
          IF (INCY.EQ.1) THEN
 | 
						|
              IF (BETA.EQ.ZERO) THEN
 | 
						|
                  DO 10 I = 1,N
 | 
						|
                      Y(I) = ZERO
 | 
						|
   10             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 20 I = 1,N
 | 
						|
                      Y(I) = BETA*Y(I)
 | 
						|
   20             CONTINUE
 | 
						|
              END IF
 | 
						|
          ELSE
 | 
						|
              IY = KY
 | 
						|
              IF (BETA.EQ.ZERO) THEN
 | 
						|
                  DO 30 I = 1,N
 | 
						|
                      Y(IY) = ZERO
 | 
						|
                      IY = IY + INCY
 | 
						|
   30             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 40 I = 1,N
 | 
						|
                      Y(IY) = BETA*Y(IY)
 | 
						|
                      IY = IY + INCY
 | 
						|
   40             CONTINUE
 | 
						|
              END IF
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
      IF (ALPHA.EQ.ZERO) RETURN
 | 
						|
      IF (LSAME(UPLO,'U')) THEN
 | 
						|
*
 | 
						|
*        Form  y  when A is stored in upper triangle.
 | 
						|
*
 | 
						|
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | 
						|
              DO 60 J = 1,N
 | 
						|
                  TEMP1 = ALPHA*X(J)
 | 
						|
                  TEMP2 = ZERO
 | 
						|
                  DO 50 I = 1,J - 1
 | 
						|
                      Y(I) = Y(I) + TEMP1*A(I,J)
 | 
						|
                      TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
 | 
						|
   50             CONTINUE
 | 
						|
                  Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
 | 
						|
   60         CONTINUE
 | 
						|
          ELSE
 | 
						|
              JX = KX
 | 
						|
              JY = KY
 | 
						|
              DO 80 J = 1,N
 | 
						|
                  TEMP1 = ALPHA*X(JX)
 | 
						|
                  TEMP2 = ZERO
 | 
						|
                  IX = KX
 | 
						|
                  IY = KY
 | 
						|
                  DO 70 I = 1,J - 1
 | 
						|
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
 | 
						|
                      TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
 | 
						|
                      IX = IX + INCX
 | 
						|
                      IY = IY + INCY
 | 
						|
   70             CONTINUE
 | 
						|
                  Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
 | 
						|
                  JX = JX + INCX
 | 
						|
                  JY = JY + INCY
 | 
						|
   80         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  y  when A is stored in lower triangle.
 | 
						|
*
 | 
						|
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | 
						|
              DO 100 J = 1,N
 | 
						|
                  TEMP1 = ALPHA*X(J)
 | 
						|
                  TEMP2 = ZERO
 | 
						|
                  Y(J) = Y(J) + TEMP1*DBLE(A(J,J))
 | 
						|
                  DO 90 I = J + 1,N
 | 
						|
                      Y(I) = Y(I) + TEMP1*A(I,J)
 | 
						|
                      TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
 | 
						|
   90             CONTINUE
 | 
						|
                  Y(J) = Y(J) + ALPHA*TEMP2
 | 
						|
  100         CONTINUE
 | 
						|
          ELSE
 | 
						|
              JX = KX
 | 
						|
              JY = KY
 | 
						|
              DO 120 J = 1,N
 | 
						|
                  TEMP1 = ALPHA*X(JX)
 | 
						|
                  TEMP2 = ZERO
 | 
						|
                  Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J))
 | 
						|
                  IX = JX
 | 
						|
                  IY = JY
 | 
						|
                  DO 110 I = J + 1,N
 | 
						|
                      IX = IX + INCX
 | 
						|
                      IY = IY + INCY
 | 
						|
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
 | 
						|
                      TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
 | 
						|
  110             CONTINUE
 | 
						|
                  Y(JY) = Y(JY) + ALPHA*TEMP2
 | 
						|
                  JX = JX + INCX
 | 
						|
                  JY = JY + INCY
 | 
						|
  120         CONTINUE
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZHEMV .
 | 
						|
*
 | 
						|
      END
 |