416 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			416 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DTRMM
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       DOUBLE PRECISION ALPHA
 | 
						|
*       INTEGER LDA,LDB,M,N
 | 
						|
*       CHARACTER DIAG,SIDE,TRANSA,UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION A(LDA,*),B(LDB,*)
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DTRMM  performs one of the matrix-matrix operations
 | 
						|
*>
 | 
						|
*>    B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
 | 
						|
*>
 | 
						|
*> where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
 | 
						|
*> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
 | 
						|
*>
 | 
						|
*>    op( A ) = A   or   op( A ) = A**T.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>           On entry,  SIDE specifies whether  op( A ) multiplies B from
 | 
						|
*>           the left or right as follows:
 | 
						|
*>
 | 
						|
*>              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
 | 
						|
*>
 | 
						|
*>              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the matrix A is an upper or
 | 
						|
*>           lower triangular matrix as follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANSA
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSA is CHARACTER*1
 | 
						|
*>           On entry, TRANSA specifies the form of op( A ) to be used in
 | 
						|
*>           the matrix multiplication as follows:
 | 
						|
*>
 | 
						|
*>              TRANSA = 'N' or 'n'   op( A ) = A.
 | 
						|
*>
 | 
						|
*>              TRANSA = 'T' or 't'   op( A ) = A**T.
 | 
						|
*>
 | 
						|
*>              TRANSA = 'C' or 'c'   op( A ) = A**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>           On entry, DIAG specifies whether or not A is unit triangular
 | 
						|
*>           as follows:
 | 
						|
*>
 | 
						|
*>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | 
						|
*>
 | 
						|
*>              DIAG = 'N' or 'n'   A is not assumed to be unit
 | 
						|
*>                                  triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>           On entry, M specifies the number of rows of B. M must be at
 | 
						|
*>           least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the number of columns of B.  N must be
 | 
						|
*>           at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is DOUBLE PRECISION.
 | 
						|
*>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
 | 
						|
*>           zero then  A is not referenced and  B need not be set before
 | 
						|
*>           entry.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>           A is DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
 | 
						|
*>           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
 | 
						|
*>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
 | 
						|
*>           upper triangular part of the array  A must contain the upper
 | 
						|
*>           triangular matrix  and the strictly lower triangular part of
 | 
						|
*>           A is not referenced.
 | 
						|
*>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
 | 
						|
*>           lower triangular part of the array  A must contain the lower
 | 
						|
*>           triangular matrix  and the strictly upper triangular part of
 | 
						|
*>           A is not referenced.
 | 
						|
*>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
 | 
						|
*>           A  are not referenced either,  but are assumed to be  unity.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
 | 
						|
*>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
 | 
						|
*>           then LDA must be at least max( 1, n ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array of DIMENSION ( LDB, n ).
 | 
						|
*>           Before entry,  the leading  m by n part of the array  B must
 | 
						|
*>           contain the matrix  B,  and  on exit  is overwritten  by the
 | 
						|
*>           transformed matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>           On entry, LDB specifies the first dimension of B as declared
 | 
						|
*>           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | 
						|
*>           max( 1, m ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_blas_level3
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 3 Blas routine.
 | 
						|
*>
 | 
						|
*>  -- Written on 8-February-1989.
 | 
						|
*>     Jack Dongarra, Argonne National Laboratory.
 | 
						|
*>     Iain Duff, AERE Harwell.
 | 
						|
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | 
						|
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level3 routine (version 3.4.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION ALPHA
 | 
						|
      INTEGER LDA,LDB,M,N
 | 
						|
      CHARACTER DIAG,SIDE,TRANSA,UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION A(LDA,*),B(LDB,*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC MAX
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION TEMP
 | 
						|
      INTEGER I,INFO,J,K,NROWA
 | 
						|
      LOGICAL LSIDE,NOUNIT,UPPER
 | 
						|
*     ..
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION ONE,ZERO
 | 
						|
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      LSIDE = LSAME(SIDE,'L')
 | 
						|
      IF (LSIDE) THEN
 | 
						|
          NROWA = M
 | 
						|
      ELSE
 | 
						|
          NROWA = N
 | 
						|
      END IF
 | 
						|
      NOUNIT = LSAME(DIAG,'N')
 | 
						|
      UPPER = LSAME(UPLO,'U')
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
 | 
						|
     +         (.NOT.LSAME(TRANSA,'T')) .AND.
 | 
						|
     +         (.NOT.LSAME(TRANSA,'C'))) THEN
 | 
						|
          INFO = 3
 | 
						|
      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
 | 
						|
          INFO = 4
 | 
						|
      ELSE IF (M.LT.0) THEN
 | 
						|
          INFO = 5
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 6
 | 
						|
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | 
						|
          INFO = 9
 | 
						|
      ELSE IF (LDB.LT.MAX(1,M)) THEN
 | 
						|
          INFO = 11
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('DTRMM ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF (M.EQ.0 .OR. N.EQ.0) RETURN
 | 
						|
*
 | 
						|
*     And when  alpha.eq.zero.
 | 
						|
*
 | 
						|
      IF (ALPHA.EQ.ZERO) THEN
 | 
						|
          DO 20 J = 1,N
 | 
						|
              DO 10 I = 1,M
 | 
						|
                  B(I,J) = ZERO
 | 
						|
   10         CONTINUE
 | 
						|
   20     CONTINUE
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations.
 | 
						|
*
 | 
						|
      IF (LSIDE) THEN
 | 
						|
          IF (LSAME(TRANSA,'N')) THEN
 | 
						|
*
 | 
						|
*           Form  B := alpha*A*B.
 | 
						|
*
 | 
						|
              IF (UPPER) THEN
 | 
						|
                  DO 50 J = 1,N
 | 
						|
                      DO 40 K = 1,M
 | 
						|
                          IF (B(K,J).NE.ZERO) THEN
 | 
						|
                              TEMP = ALPHA*B(K,J)
 | 
						|
                              DO 30 I = 1,K - 1
 | 
						|
                                  B(I,J) = B(I,J) + TEMP*A(I,K)
 | 
						|
   30                         CONTINUE
 | 
						|
                              IF (NOUNIT) TEMP = TEMP*A(K,K)
 | 
						|
                              B(K,J) = TEMP
 | 
						|
                          END IF
 | 
						|
   40                 CONTINUE
 | 
						|
   50             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 80 J = 1,N
 | 
						|
                      DO 70 K = M,1,-1
 | 
						|
                          IF (B(K,J).NE.ZERO) THEN
 | 
						|
                              TEMP = ALPHA*B(K,J)
 | 
						|
                              B(K,J) = TEMP
 | 
						|
                              IF (NOUNIT) B(K,J) = B(K,J)*A(K,K)
 | 
						|
                              DO 60 I = K + 1,M
 | 
						|
                                  B(I,J) = B(I,J) + TEMP*A(I,K)
 | 
						|
   60                         CONTINUE
 | 
						|
                          END IF
 | 
						|
   70                 CONTINUE
 | 
						|
   80             CONTINUE
 | 
						|
              END IF
 | 
						|
          ELSE
 | 
						|
*
 | 
						|
*           Form  B := alpha*A**T*B.
 | 
						|
*
 | 
						|
              IF (UPPER) THEN
 | 
						|
                  DO 110 J = 1,N
 | 
						|
                      DO 100 I = M,1,-1
 | 
						|
                          TEMP = B(I,J)
 | 
						|
                          IF (NOUNIT) TEMP = TEMP*A(I,I)
 | 
						|
                          DO 90 K = 1,I - 1
 | 
						|
                              TEMP = TEMP + A(K,I)*B(K,J)
 | 
						|
   90                     CONTINUE
 | 
						|
                          B(I,J) = ALPHA*TEMP
 | 
						|
  100                 CONTINUE
 | 
						|
  110             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 140 J = 1,N
 | 
						|
                      DO 130 I = 1,M
 | 
						|
                          TEMP = B(I,J)
 | 
						|
                          IF (NOUNIT) TEMP = TEMP*A(I,I)
 | 
						|
                          DO 120 K = I + 1,M
 | 
						|
                              TEMP = TEMP + A(K,I)*B(K,J)
 | 
						|
  120                     CONTINUE
 | 
						|
                          B(I,J) = ALPHA*TEMP
 | 
						|
  130                 CONTINUE
 | 
						|
  140             CONTINUE
 | 
						|
              END IF
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
          IF (LSAME(TRANSA,'N')) THEN
 | 
						|
*
 | 
						|
*           Form  B := alpha*B*A.
 | 
						|
*
 | 
						|
              IF (UPPER) THEN
 | 
						|
                  DO 180 J = N,1,-1
 | 
						|
                      TEMP = ALPHA
 | 
						|
                      IF (NOUNIT) TEMP = TEMP*A(J,J)
 | 
						|
                      DO 150 I = 1,M
 | 
						|
                          B(I,J) = TEMP*B(I,J)
 | 
						|
  150                 CONTINUE
 | 
						|
                      DO 170 K = 1,J - 1
 | 
						|
                          IF (A(K,J).NE.ZERO) THEN
 | 
						|
                              TEMP = ALPHA*A(K,J)
 | 
						|
                              DO 160 I = 1,M
 | 
						|
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
 | 
						|
  160                         CONTINUE
 | 
						|
                          END IF
 | 
						|
  170                 CONTINUE
 | 
						|
  180             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 220 J = 1,N
 | 
						|
                      TEMP = ALPHA
 | 
						|
                      IF (NOUNIT) TEMP = TEMP*A(J,J)
 | 
						|
                      DO 190 I = 1,M
 | 
						|
                          B(I,J) = TEMP*B(I,J)
 | 
						|
  190                 CONTINUE
 | 
						|
                      DO 210 K = J + 1,N
 | 
						|
                          IF (A(K,J).NE.ZERO) THEN
 | 
						|
                              TEMP = ALPHA*A(K,J)
 | 
						|
                              DO 200 I = 1,M
 | 
						|
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
 | 
						|
  200                         CONTINUE
 | 
						|
                          END IF
 | 
						|
  210                 CONTINUE
 | 
						|
  220             CONTINUE
 | 
						|
              END IF
 | 
						|
          ELSE
 | 
						|
*
 | 
						|
*           Form  B := alpha*B*A**T.
 | 
						|
*
 | 
						|
              IF (UPPER) THEN
 | 
						|
                  DO 260 K = 1,N
 | 
						|
                      DO 240 J = 1,K - 1
 | 
						|
                          IF (A(J,K).NE.ZERO) THEN
 | 
						|
                              TEMP = ALPHA*A(J,K)
 | 
						|
                              DO 230 I = 1,M
 | 
						|
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
 | 
						|
  230                         CONTINUE
 | 
						|
                          END IF
 | 
						|
  240                 CONTINUE
 | 
						|
                      TEMP = ALPHA
 | 
						|
                      IF (NOUNIT) TEMP = TEMP*A(K,K)
 | 
						|
                      IF (TEMP.NE.ONE) THEN
 | 
						|
                          DO 250 I = 1,M
 | 
						|
                              B(I,K) = TEMP*B(I,K)
 | 
						|
  250                     CONTINUE
 | 
						|
                      END IF
 | 
						|
  260             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 300 K = N,1,-1
 | 
						|
                      DO 280 J = K + 1,N
 | 
						|
                          IF (A(J,K).NE.ZERO) THEN
 | 
						|
                              TEMP = ALPHA*A(J,K)
 | 
						|
                              DO 270 I = 1,M
 | 
						|
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
 | 
						|
  270                         CONTINUE
 | 
						|
                          END IF
 | 
						|
  280                 CONTINUE
 | 
						|
                      TEMP = ALPHA
 | 
						|
                      IF (NOUNIT) TEMP = TEMP*A(K,K)
 | 
						|
                      IF (TEMP.NE.ONE) THEN
 | 
						|
                          DO 290 I = 1,M
 | 
						|
                              B(I,K) = TEMP*B(I,K)
 | 
						|
  290                     CONTINUE
 | 
						|
                      END IF
 | 
						|
  300             CONTINUE
 | 
						|
              END IF
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DTRMM .
 | 
						|
*
 | 
						|
      END
 |