303 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE STPSVF( UPLO, TRANS, DIAG, N, AP, X, INCX )
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INCX, N
 | 
						|
      CHARACTER*1        DIAG, TRANS, UPLO
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               AP( * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  STPSV  solves one of the systems of equations
 | 
						|
*
 | 
						|
*     A*x = b,   or   A'*x = b,
 | 
						|
*
 | 
						|
*  where b and x are n element vectors and A is an n by n unit, or
 | 
						|
*  non-unit, upper or lower triangular matrix, supplied in packed form.
 | 
						|
*
 | 
						|
*  No test for singularity or near-singularity is included in this
 | 
						|
*  routine. Such tests must be performed before calling this routine.
 | 
						|
*
 | 
						|
*  Parameters
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*  UPLO   - CHARACTER*1.
 | 
						|
*           On entry, UPLO specifies whether the matrix is an upper or
 | 
						|
*           lower triangular matrix as follows:
 | 
						|
*
 | 
						|
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | 
						|
*
 | 
						|
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  TRANS  - CHARACTER*1.
 | 
						|
*           On entry, TRANS specifies the equations to be solved as
 | 
						|
*           follows:
 | 
						|
*
 | 
						|
*              TRANS = 'N' or 'n'   A*x = b.
 | 
						|
*
 | 
						|
*              TRANS = 'T' or 't'   A'*x = b.
 | 
						|
*
 | 
						|
*              TRANS = 'C' or 'c'   A'*x = b.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  DIAG   - CHARACTER*1.
 | 
						|
*           On entry, DIAG specifies whether or not A is unit
 | 
						|
*           triangular as follows:
 | 
						|
*
 | 
						|
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | 
						|
*
 | 
						|
*              DIAG = 'N' or 'n'   A is not assumed to be unit
 | 
						|
*                                  triangular.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  N      - INTEGER.
 | 
						|
*           On entry, N specifies the order of the matrix A.
 | 
						|
*           N must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  AP     - REAL             array of DIMENSION at least
 | 
						|
*           ( ( n*( n + 1 ) )/2 ).
 | 
						|
*           Before entry with  UPLO = 'U' or 'u', the array AP must
 | 
						|
*           contain the upper triangular matrix packed sequentially,
 | 
						|
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
 | 
						|
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
 | 
						|
*           respectively, and so on.
 | 
						|
*           Before entry with UPLO = 'L' or 'l', the array AP must
 | 
						|
*           contain the lower triangular matrix packed sequentially,
 | 
						|
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
 | 
						|
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
 | 
						|
*           respectively, and so on.
 | 
						|
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 | 
						|
*           A are not referenced, but are assumed to be unity.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  X      - REAL             array of dimension at least
 | 
						|
*           ( 1 + ( n - 1 )*abs( INCX ) ).
 | 
						|
*           Before entry, the incremented array X must contain the n
 | 
						|
*           element right-hand side vector b. On exit, X is overwritten
 | 
						|
*           with the solution vector x.
 | 
						|
*
 | 
						|
*  INCX   - INTEGER.
 | 
						|
*           On entry, INCX specifies the increment for the elements of
 | 
						|
*           X. INCX must not be zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*
 | 
						|
*  Level 2 Blas routine.
 | 
						|
*
 | 
						|
*  -- Written on 22-October-1986.
 | 
						|
*     Jack Dongarra, Argonne National Lab.
 | 
						|
*     Jeremy Du Croz, Nag Central Office.
 | 
						|
*     Sven Hammarling, Nag Central Office.
 | 
						|
*     Richard Hanson, Sandia National Labs.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER        ( ZERO = 0.0E+0 )
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               TEMP
 | 
						|
      INTEGER            I, INFO, IX, J, JX, K, KK, KX
 | 
						|
      LOGICAL            NOUNIT
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF     ( .NOT.LSAME( UPLO , 'U' ).AND.
 | 
						|
     $         .NOT.LSAME( UPLO , 'L' )      )THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'T' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'C' )      )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
 | 
						|
     $         .NOT.LSAME( DIAG , 'N' )      )THEN
 | 
						|
         INFO = 3
 | 
						|
      ELSE IF( N.LT.0 )THEN
 | 
						|
         INFO = 4
 | 
						|
      ELSE IF( INCX.EQ.0 )THEN
 | 
						|
         INFO = 7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'STPSV ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      NOUNIT = LSAME( DIAG, 'N' )
 | 
						|
*
 | 
						|
*     Set up the start point in X if the increment is not unity. This
 | 
						|
*     will be  ( N - 1 )*INCX  too small for descending loops.
 | 
						|
*
 | 
						|
      IF( INCX.LE.0 )THEN
 | 
						|
         KX = 1 - ( N - 1 )*INCX
 | 
						|
      ELSE IF( INCX.NE.1 )THEN
 | 
						|
         KX = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of AP are
 | 
						|
*     accessed sequentially with one pass through AP.
 | 
						|
*
 | 
						|
      IF( LSAME( TRANS, 'N' ) )THEN
 | 
						|
*
 | 
						|
*        Form  x := inv( A )*x.
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) )THEN
 | 
						|
            KK = ( N*( N + 1 ) )/2
 | 
						|
            IF( INCX.EQ.1 )THEN
 | 
						|
               DO 20, J = N, 1, -1
 | 
						|
                  IF( X( J ).NE.ZERO )THEN
 | 
						|
                     IF( NOUNIT )
 | 
						|
     $                  X( J ) = X( J )/AP( KK )
 | 
						|
                     TEMP = X( J )
 | 
						|
                     K    = KK     - 1
 | 
						|
                     DO 10, I = J - 1, 1, -1
 | 
						|
                        X( I ) = X( I ) - TEMP*AP( K )
 | 
						|
                        K      = K      - 1
 | 
						|
   10                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  KK = KK - J
 | 
						|
   20          CONTINUE
 | 
						|
            ELSE
 | 
						|
               JX = KX + ( N - 1 )*INCX
 | 
						|
               DO 40, J = N, 1, -1
 | 
						|
                  IF( X( JX ).NE.ZERO )THEN
 | 
						|
                     IF( NOUNIT )
 | 
						|
     $                  X( JX ) = X( JX )/AP( KK )
 | 
						|
                     TEMP = X( JX )
 | 
						|
                     IX   = JX
 | 
						|
                     DO 30, K = KK - 1, KK - J + 1, -1
 | 
						|
                        IX      = IX      - INCX
 | 
						|
                        X( IX ) = X( IX ) - TEMP*AP( K )
 | 
						|
   30                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  JX = JX - INCX
 | 
						|
                  KK = KK - J
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            KK = 1
 | 
						|
            IF( INCX.EQ.1 )THEN
 | 
						|
               DO 60, J = 1, N
 | 
						|
                  IF( X( J ).NE.ZERO )THEN
 | 
						|
                     IF( NOUNIT )
 | 
						|
     $                  X( J ) = X( J )/AP( KK )
 | 
						|
                     TEMP = X( J )
 | 
						|
                     K    = KK     + 1
 | 
						|
                     DO 50, I = J + 1, N
 | 
						|
                        X( I ) = X( I ) - TEMP*AP( K )
 | 
						|
                        K      = K      + 1
 | 
						|
   50                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  KK = KK + ( N - J + 1 )
 | 
						|
   60          CONTINUE
 | 
						|
            ELSE
 | 
						|
               JX = KX
 | 
						|
               DO 80, J = 1, N
 | 
						|
                  IF( X( JX ).NE.ZERO )THEN
 | 
						|
                     IF( NOUNIT )
 | 
						|
     $                  X( JX ) = X( JX )/AP( KK )
 | 
						|
                     TEMP = X( JX )
 | 
						|
                     IX   = JX
 | 
						|
                     DO 70, K = KK + 1, KK + N - J
 | 
						|
                        IX      = IX      + INCX
 | 
						|
                        X( IX ) = X( IX ) - TEMP*AP( K )
 | 
						|
   70                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  JX = JX + INCX
 | 
						|
                  KK = KK + ( N - J + 1 )
 | 
						|
   80          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  x := inv( A' )*x.
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) )THEN
 | 
						|
            KK = 1
 | 
						|
            IF( INCX.EQ.1 )THEN
 | 
						|
               DO 100, J = 1, N
 | 
						|
                  TEMP = X( J )
 | 
						|
                  K    = KK
 | 
						|
                  DO 90, I = 1, J - 1
 | 
						|
                     TEMP = TEMP - AP( K )*X( I )
 | 
						|
                     K    = K    + 1
 | 
						|
   90             CONTINUE
 | 
						|
                  IF( NOUNIT )
 | 
						|
     $               TEMP = TEMP/AP( KK + J - 1 )
 | 
						|
                  X( J ) = TEMP
 | 
						|
                  KK     = KK   + J
 | 
						|
  100          CONTINUE
 | 
						|
            ELSE
 | 
						|
               JX = KX
 | 
						|
               DO 120, J = 1, N
 | 
						|
                  TEMP = X( JX )
 | 
						|
                  IX   = KX
 | 
						|
                  DO 110, K = KK, KK + J - 2
 | 
						|
                     TEMP = TEMP - AP( K )*X( IX )
 | 
						|
                     IX   = IX   + INCX
 | 
						|
  110             CONTINUE
 | 
						|
                  IF( NOUNIT )
 | 
						|
     $               TEMP = TEMP/AP( KK + J - 1 )
 | 
						|
                  X( JX ) = TEMP
 | 
						|
                  JX      = JX   + INCX
 | 
						|
                  KK      = KK   + J
 | 
						|
  120          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            KK = ( N*( N + 1 ) )/2
 | 
						|
            IF( INCX.EQ.1 )THEN
 | 
						|
               DO 140, J = N, 1, -1
 | 
						|
                  TEMP = X( J )
 | 
						|
                  K = KK
 | 
						|
                  DO 130, I = N, J + 1, -1
 | 
						|
                     TEMP = TEMP - AP( K )*X( I )
 | 
						|
                     K    = K    - 1
 | 
						|
  130             CONTINUE
 | 
						|
                  IF( NOUNIT )
 | 
						|
     $               TEMP = TEMP/AP( KK - N + J )
 | 
						|
                  X( J ) = TEMP
 | 
						|
                  KK     = KK   - ( N - J + 1 )
 | 
						|
  140          CONTINUE
 | 
						|
            ELSE
 | 
						|
               KX = KX + ( N - 1 )*INCX
 | 
						|
               JX = KX
 | 
						|
               DO 160, J = N, 1, -1
 | 
						|
                  TEMP = X( JX )
 | 
						|
                  IX   = KX
 | 
						|
                  DO 150, K = KK, KK - ( N - ( J + 1 ) ), -1
 | 
						|
                     TEMP = TEMP - AP( K )*X( IX )
 | 
						|
                     IX   = IX   - INCX
 | 
						|
  150             CONTINUE
 | 
						|
                  IF( NOUNIT )
 | 
						|
     $               TEMP = TEMP/AP( KK - N + J )
 | 
						|
                  X( JX ) = TEMP
 | 
						|
                  JX      = JX   - INCX
 | 
						|
                  KK      = KK   - (N - J + 1 )
 | 
						|
  160          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of STPSV .
 | 
						|
*
 | 
						|
      END
 |