275 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZTPT03
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZTPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
 | 
						|
*                          TSCAL, X, LDX, B, LDB, WORK, RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, TRANS, UPLO
 | 
						|
*       INTEGER            LDB, LDX, N, NRHS
 | 
						|
*       DOUBLE PRECISION   RESID, SCALE, TSCAL
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   CNORM( * )
 | 
						|
*       COMPLEX*16         AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZTPT03 computes the residual for the solution to a scaled triangular
 | 
						|
*> system of equations A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b,
 | 
						|
*> when the triangular matrix A is stored in packed format.  Here A**T
 | 
						|
*> denotes the transpose of A, A**H denotes the conjugate transpose of
 | 
						|
*> A, s is a scalar, and x and b are N by NRHS matrices.  The test ratio
 | 
						|
*> is the maximum over the number of right hand sides of
 | 
						|
*>    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
 | 
						|
*> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix A is upper or lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          Specifies the operation applied to A.
 | 
						|
*>          = 'N':  A *x = s*b     (No transpose)
 | 
						|
*>          = 'T':  A**T *x = s*b  (Transpose)
 | 
						|
*>          = 'C':  A**H *x = s*b  (Conjugate transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          Specifies whether or not the matrix A is unit triangular.
 | 
						|
*>          = 'N':  Non-unit triangular
 | 
						|
*>          = 'U':  Unit triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrices X and B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>          The upper or lower triangular matrix A, packed columnwise in
 | 
						|
*>          a linear array.  The j-th column of A is stored in the array
 | 
						|
*>          AP as follows:
 | 
						|
*>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L',
 | 
						|
*>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is DOUBLE PRECISION
 | 
						|
*>          The scaling factor s used in solving the triangular system.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CNORM
 | 
						|
*> \verbatim
 | 
						|
*>          CNORM is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The 1-norms of the columns of A, not counting the diagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TSCAL
 | 
						|
*> \verbatim
 | 
						|
*>          TSCAL is DOUBLE PRECISION
 | 
						|
*>          The scaling factor used in computing the 1-norms in CNORM.
 | 
						|
*>          CNORM actually contains the column norms of TSCAL*A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
 | 
						|
*>          The computed solution vectors for the system of linear
 | 
						|
*>          equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | 
						|
*>          The right hand side vectors for the system of linear
 | 
						|
*>          equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          The maximum over the number of right hand sides of
 | 
						|
*>          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZTPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
 | 
						|
     $                   TSCAL, X, LDX, B, LDB, WORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, TRANS, UPLO
 | 
						|
      INTEGER            LDB, LDX, N, NRHS
 | 
						|
      DOUBLE PRECISION   RESID, SCALE, TSCAL
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   CNORM( * )
 | 
						|
      COMPLEX*16         AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            IX, J, JJ
 | 
						|
      DOUBLE PRECISION   EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IZAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           LSAME, IZAMAX, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZAXPY, ZCOPY, ZDSCAL, ZTPMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DCMPLX, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      SMLNUM = DLAMCH( 'Safe minimum' )
 | 
						|
*
 | 
						|
*     Compute the norm of the triangular matrix A using the column
 | 
						|
*     norms already computed by ZLATPS.
 | 
						|
*
 | 
						|
      TNORM = 0.D0
 | 
						|
      IF( LSAME( DIAG, 'N' ) ) THEN
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            JJ = 1
 | 
						|
            DO 10 J = 1, N
 | 
						|
               TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
 | 
						|
               JJ = JJ + J
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JJ = 1
 | 
						|
            DO 20 J = 1, N
 | 
						|
               TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
 | 
						|
               JJ = JJ + N - J + 1
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         DO 30 J = 1, N
 | 
						|
            TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
 | 
						|
   30    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the maximum over the number of right hand sides of
 | 
						|
*        norm(op(A)*x - s*b) / ( norm(A) * norm(x) * EPS ).
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      DO 40 J = 1, NRHS
 | 
						|
         CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
 | 
						|
         IX = IZAMAX( N, WORK, 1 )
 | 
						|
         XNORM = MAX( ONE, ABS( X( IX, J ) ) )
 | 
						|
         XSCAL = ( ONE / XNORM ) / DBLE( N )
 | 
						|
         CALL ZDSCAL( N, XSCAL, WORK, 1 )
 | 
						|
         CALL ZTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
 | 
						|
         CALL ZAXPY( N, DCMPLX( -SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 )
 | 
						|
         IX = IZAMAX( N, WORK, 1 )
 | 
						|
         ERR = TSCAL*ABS( WORK( IX ) )
 | 
						|
         IX = IZAMAX( N, X( 1, J ), 1 )
 | 
						|
         XNORM = ABS( X( IX, J ) )
 | 
						|
         IF( ERR*SMLNUM.LE.XNORM ) THEN
 | 
						|
            IF( XNORM.GT.ZERO )
 | 
						|
     $         ERR = ERR / XNORM
 | 
						|
         ELSE
 | 
						|
            IF( ERR.GT.ZERO )
 | 
						|
     $         ERR = ONE / EPS
 | 
						|
         END IF
 | 
						|
         IF( ERR*SMLNUM.LE.TNORM ) THEN
 | 
						|
            IF( TNORM.GT.ZERO )
 | 
						|
     $         ERR = ERR / TNORM
 | 
						|
         ELSE
 | 
						|
            IF( ERR.GT.ZERO )
 | 
						|
     $         ERR = ONE / EPS
 | 
						|
         END IF
 | 
						|
         RESID = MAX( RESID, ERR )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZTPT03
 | 
						|
*
 | 
						|
      END
 |