243 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZTPTRI
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZTPTRI + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztptri.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztptri.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztptri.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, UPLO
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         AP( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZTPTRI computes the inverse of a complex upper or lower triangular
 | 
						|
*> matrix A stored in packed format.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  A is upper triangular;
 | 
						|
*>          = 'L':  A is lower triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          = 'N':  A is non-unit triangular;
 | 
						|
*>          = 'U':  A is unit triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangular matrix A, stored
 | 
						|
*>          columnwise in a linear array.  The j-th column of A is stored
 | 
						|
*>          in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*>          See below for further details.
 | 
						|
*>          On exit, the (triangular) inverse of the original matrix, in
 | 
						|
*>          the same packed storage format.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
 | 
						|
*>                matrix is singular and its inverse can not be computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  A triangular matrix A can be transferred to packed storage using one
 | 
						|
*>  of the following program segments:
 | 
						|
*>
 | 
						|
*>  UPLO = 'U':                      UPLO = 'L':
 | 
						|
*>
 | 
						|
*>        JC = 1                           JC = 1
 | 
						|
*>        DO 2 J = 1, N                    DO 2 J = 1, N
 | 
						|
*>           DO 1 I = 1, J                    DO 1 I = J, N
 | 
						|
*>              AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)
 | 
						|
*>      1    CONTINUE                    1    CONTINUE
 | 
						|
*>           JC = JC + J                      JC = JC + N - J + 1
 | 
						|
*>      2 CONTINUE                       2 CONTINUE
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, UPLO
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         AP( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
 | 
						|
     $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOUNIT, UPPER
 | 
						|
      INTEGER            J, JC, JCLAST, JJ
 | 
						|
      COMPLEX*16         AJJ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZSCAL, ZTPMV
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      NOUNIT = LSAME( DIAG, 'N' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZTPTRI', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check for singularity if non-unit.
 | 
						|
*
 | 
						|
      IF( NOUNIT ) THEN
 | 
						|
         IF( UPPER ) THEN
 | 
						|
            JJ = 0
 | 
						|
            DO 10 INFO = 1, N
 | 
						|
               JJ = JJ + INFO
 | 
						|
               IF( AP( JJ ).EQ.ZERO )
 | 
						|
     $            RETURN
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JJ = 1
 | 
						|
            DO 20 INFO = 1, N
 | 
						|
               IF( AP( JJ ).EQ.ZERO )
 | 
						|
     $            RETURN
 | 
						|
               JJ = JJ + N - INFO + 1
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
         INFO = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Compute inverse of upper triangular matrix.
 | 
						|
*
 | 
						|
         JC = 1
 | 
						|
         DO 30 J = 1, N
 | 
						|
            IF( NOUNIT ) THEN
 | 
						|
               AP( JC+J-1 ) = ONE / AP( JC+J-1 )
 | 
						|
               AJJ = -AP( JC+J-1 )
 | 
						|
            ELSE
 | 
						|
               AJJ = -ONE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Compute elements 1:j-1 of j-th column.
 | 
						|
*
 | 
						|
            CALL ZTPMV( 'Upper', 'No transpose', DIAG, J-1, AP,
 | 
						|
     $                  AP( JC ), 1 )
 | 
						|
            CALL ZSCAL( J-1, AJJ, AP( JC ), 1 )
 | 
						|
            JC = JC + J
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute inverse of lower triangular matrix.
 | 
						|
*
 | 
						|
         JC = N*( N+1 ) / 2
 | 
						|
         DO 40 J = N, 1, -1
 | 
						|
            IF( NOUNIT ) THEN
 | 
						|
               AP( JC ) = ONE / AP( JC )
 | 
						|
               AJJ = -AP( JC )
 | 
						|
            ELSE
 | 
						|
               AJJ = -ONE
 | 
						|
            END IF
 | 
						|
            IF( J.LT.N ) THEN
 | 
						|
*
 | 
						|
*              Compute elements j+1:n of j-th column.
 | 
						|
*
 | 
						|
               CALL ZTPMV( 'Lower', 'No transpose', DIAG, N-J,
 | 
						|
     $                     AP( JCLAST ), AP( JC+1 ), 1 )
 | 
						|
               CALL ZSCAL( N-J, AJJ, AP( JC+1 ), 1 )
 | 
						|
            END IF
 | 
						|
            JCLAST = JC
 | 
						|
            JC = JC - N + J - 2
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZTPTRI
 | 
						|
*
 | 
						|
      END
 |