267 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLARZT + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarzt.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarzt.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarzt.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIRECT, STOREV
 | 
						|
*       INTEGER            K, LDT, LDV, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLARZT forms the triangular factor T of a complex block reflector
 | 
						|
*> H of order > n, which is defined as a product of k elementary
 | 
						|
*> reflectors.
 | 
						|
*>
 | 
						|
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
 | 
						|
*>
 | 
						|
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
 | 
						|
*>
 | 
						|
*> If STOREV = 'C', the vector which defines the elementary reflector
 | 
						|
*> H(i) is stored in the i-th column of the array V, and
 | 
						|
*>
 | 
						|
*>    H  =  I - V * T * V**H
 | 
						|
*>
 | 
						|
*> If STOREV = 'R', the vector which defines the elementary reflector
 | 
						|
*> H(i) is stored in the i-th row of the array V, and
 | 
						|
*>
 | 
						|
*>    H  =  I - V**H * T * V
 | 
						|
*>
 | 
						|
*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] DIRECT
 | 
						|
*> \verbatim
 | 
						|
*>          DIRECT is CHARACTER*1
 | 
						|
*>          Specifies the order in which the elementary reflectors are
 | 
						|
*>          multiplied to form the block reflector:
 | 
						|
*>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
 | 
						|
*>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] STOREV
 | 
						|
*> \verbatim
 | 
						|
*>          STOREV is CHARACTER*1
 | 
						|
*>          Specifies how the vectors which define the elementary
 | 
						|
*>          reflectors are stored (see also Further Details):
 | 
						|
*>          = 'C': columnwise                        (not supported yet)
 | 
						|
*>          = 'R': rowwise
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the block reflector H. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The order of the triangular factor T (= the number of
 | 
						|
*>          elementary reflectors). K >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX*16 array, dimension
 | 
						|
*>                               (LDV,K) if STOREV = 'C'
 | 
						|
*>                               (LDV,N) if STOREV = 'R'
 | 
						|
*>          The matrix V. See further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V.
 | 
						|
*>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX*16 array, dimension (K)
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is COMPLEX*16 array, dimension (LDT,K)
 | 
						|
*>          The k by k triangular factor T of the block reflector.
 | 
						|
*>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
 | 
						|
*>          lower triangular. The rest of the array is not used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T. LDT >= K.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The shape of the matrix V and the storage of the vectors which define
 | 
						|
*>  the H(i) is best illustrated by the following example with n = 5 and
 | 
						|
*>  k = 3. The elements equal to 1 are not stored; the corresponding
 | 
						|
*>  array elements are modified but restored on exit. The rest of the
 | 
						|
*>  array is not used.
 | 
						|
*>
 | 
						|
*>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
 | 
						|
*>
 | 
						|
*>                                              ______V_____
 | 
						|
*>         ( v1 v2 v3 )                        /            \
 | 
						|
*>         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
 | 
						|
*>     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
 | 
						|
*>         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
 | 
						|
*>         ( v1 v2 v3 )
 | 
						|
*>            .  .  .
 | 
						|
*>            .  .  .
 | 
						|
*>            1  .  .
 | 
						|
*>               1  .
 | 
						|
*>                  1
 | 
						|
*>
 | 
						|
*>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
 | 
						|
*>
 | 
						|
*>                                                        ______V_____
 | 
						|
*>            1                                          /            \
 | 
						|
*>            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
 | 
						|
*>            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
 | 
						|
*>            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
 | 
						|
*>            .  .  .
 | 
						|
*>         ( v1 v2 v3 )
 | 
						|
*>         ( v1 v2 v3 )
 | 
						|
*>     V = ( v1 v2 v3 )
 | 
						|
*>         ( v1 v2 v3 )
 | 
						|
*>         ( v1 v2 v3 )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIRECT, STOREV
 | 
						|
      INTEGER            K, LDT, LDV, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ZERO
 | 
						|
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, J
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGEMV, ZLACGV, ZTRMV
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Check for currently supported options
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZLARZT', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DO 20 I = K, 1, -1
 | 
						|
         IF( TAU( I ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*           H(i)  =  I
 | 
						|
*
 | 
						|
            DO 10 J = I, K
 | 
						|
               T( J, I ) = ZERO
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           general case
 | 
						|
*
 | 
						|
            IF( I.LT.K ) THEN
 | 
						|
*
 | 
						|
*              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**H
 | 
						|
*
 | 
						|
               CALL ZLACGV( N, V( I, 1 ), LDV )
 | 
						|
               CALL ZGEMV( 'No transpose', K-I, N, -TAU( I ),
 | 
						|
     $                     V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
 | 
						|
     $                     T( I+1, I ), 1 )
 | 
						|
               CALL ZLACGV( N, V( I, 1 ), LDV )
 | 
						|
*
 | 
						|
*              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
 | 
						|
*
 | 
						|
               CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
 | 
						|
     $                     T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
 | 
						|
            END IF
 | 
						|
            T( I, I ) = TAU( I )
 | 
						|
         END IF
 | 
						|
   20 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLARZT
 | 
						|
*
 | 
						|
      END
 |