744 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			744 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SGELSS solves overdetermined or underdetermined systems for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGELSS + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelss.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelss.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelss.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 | 
						|
*                          WORK, LWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | 
						|
*       REAL               RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGELSS computes the minimum norm solution to a real linear least
 | 
						|
*> squares problem:
 | 
						|
*>
 | 
						|
*> Minimize 2-norm(| b - A*x |).
 | 
						|
*>
 | 
						|
*> using the singular value decomposition (SVD) of A. A is an M-by-N
 | 
						|
*> matrix which may be rank-deficient.
 | 
						|
*>
 | 
						|
*> Several right hand side vectors b and solution vectors x can be
 | 
						|
*> handled in a single call; they are stored as the columns of the
 | 
						|
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
 | 
						|
*> X.
 | 
						|
*>
 | 
						|
*> The effective rank of A is determined by treating as zero those
 | 
						|
*> singular values which are less than RCOND times the largest singular
 | 
						|
*> value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrices B and X. NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, the first min(m,n) rows of A are overwritten with
 | 
						|
*>          its right singular vectors, stored rowwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the M-by-NRHS right hand side matrix B.
 | 
						|
*>          On exit, B is overwritten by the N-by-NRHS solution
 | 
						|
*>          matrix X.  If m >= n and RANK = n, the residual
 | 
						|
*>          sum-of-squares for the solution in the i-th column is given
 | 
						|
*>          by the sum of squares of elements n+1:m in that column.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL array, dimension (min(M,N))
 | 
						|
*>          The singular values of A in decreasing order.
 | 
						|
*>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          RCOND is used to determine the effective rank of A.
 | 
						|
*>          Singular values S(i) <= RCOND*S(1) are treated as zero.
 | 
						|
*>          If RCOND < 0, machine precision is used instead.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>          The effective rank of A, i.e., the number of singular values
 | 
						|
*>          which are greater than RCOND*S(1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= 1, and also:
 | 
						|
*>          LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
 | 
						|
*>          For good performance, LWORK should generally be larger.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  the algorithm for computing the SVD failed to converge;
 | 
						|
*>                if INFO = i, i off-diagonal elements of an intermediate
 | 
						|
*>                bidiagonal form did not converge to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup realGEsolve
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 | 
						|
     $                   WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | 
						|
      REAL               RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            BDSPAC, BL, CHUNK, I, IASCL, IBSCL, IE, IL,
 | 
						|
     $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
 | 
						|
     $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
 | 
						|
      INTEGER            LWORK_SGEQRF, LWORK_SORMQR, LWORK_SGEBRD,
 | 
						|
     $                   LWORK_SORMBR, LWORK_SORGBR, LWORK_SORMLQ 
 | 
						|
      REAL               ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               DUM( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SBDSQR, SCOPY, SGEBRD, SGELQF, SGEMM, SGEMV,
 | 
						|
     $                   SGEQRF, SLABAD, SLACPY, SLASCL, SLASET, SORGBR,
 | 
						|
     $                   SORMBR, SORMLQ, SORMQR, SRSCL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               SLAMCH, SLANGE
 | 
						|
      EXTERNAL           ILAENV, SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      MINMN = MIN( M, N )
 | 
						|
      MAXMN = MAX( M, N )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*      (Note: Comments in the code beginning "Workspace:" describe the
 | 
						|
*       minimal amount of workspace needed at that point in the code,
 | 
						|
*       as well as the preferred amount for good performance.
 | 
						|
*       NB refers to the optimal block size for the immediately
 | 
						|
*       following subroutine, as returned by ILAENV.)
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         MINWRK = 1
 | 
						|
         MAXWRK = 1
 | 
						|
         IF( MINMN.GT.0 ) THEN
 | 
						|
            MM = M
 | 
						|
            MNTHR = ILAENV( 6, 'SGELSS', ' ', M, N, NRHS, -1 )
 | 
						|
            IF( M.GE.N .AND. M.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*              Path 1a - overdetermined, with many more rows than
 | 
						|
*                        columns
 | 
						|
*
 | 
						|
*              Compute space needed for SGEQRF
 | 
						|
               CALL SGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
 | 
						|
               LWORK_SGEQRF=DUM(1)
 | 
						|
*              Compute space needed for SORMQR
 | 
						|
               CALL SORMQR( 'L', 'T', M, NRHS, N, A, LDA, DUM(1), B,
 | 
						|
     $                   LDB, DUM(1), -1, INFO )
 | 
						|
               LWORK_SORMQR=DUM(1)
 | 
						|
               MM = N
 | 
						|
               MAXWRK = MAX( MAXWRK, N + LWORK_SGEQRF )
 | 
						|
               MAXWRK = MAX( MAXWRK, N + LWORK_SORMQR )
 | 
						|
            END IF
 | 
						|
            IF( M.GE.N ) THEN
 | 
						|
*
 | 
						|
*              Path 1 - overdetermined or exactly determined
 | 
						|
*
 | 
						|
*              Compute workspace needed for SBDSQR
 | 
						|
*
 | 
						|
               BDSPAC = MAX( 1, 5*N )
 | 
						|
*              Compute space needed for SGEBRD
 | 
						|
               CALL SGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
 | 
						|
     $                      DUM(1), DUM(1), -1, INFO )
 | 
						|
               LWORK_SGEBRD=DUM(1)
 | 
						|
*              Compute space needed for SORMBR
 | 
						|
               CALL SORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, DUM(1),
 | 
						|
     $                B, LDB, DUM(1), -1, INFO )
 | 
						|
               LWORK_SORMBR=DUM(1)
 | 
						|
*              Compute space needed for SORGBR
 | 
						|
               CALL SORGBR( 'P', N, N, N, A, LDA, DUM(1),
 | 
						|
     $                   DUM(1), -1, INFO )
 | 
						|
               LWORK_SORGBR=DUM(1)
 | 
						|
*              Compute total workspace needed 
 | 
						|
               MAXWRK = MAX( MAXWRK, 3*N + LWORK_SGEBRD )
 | 
						|
               MAXWRK = MAX( MAXWRK, 3*N + LWORK_SORMBR )
 | 
						|
               MAXWRK = MAX( MAXWRK, 3*N + LWORK_SORGBR )
 | 
						|
               MAXWRK = MAX( MAXWRK, BDSPAC )
 | 
						|
               MAXWRK = MAX( MAXWRK, N*NRHS )
 | 
						|
               MINWRK = MAX( 3*N + MM, 3*N + NRHS, BDSPAC )
 | 
						|
               MAXWRK = MAX( MINWRK, MAXWRK )
 | 
						|
            END IF
 | 
						|
            IF( N.GT.M ) THEN
 | 
						|
*
 | 
						|
*              Compute workspace needed for SBDSQR
 | 
						|
*
 | 
						|
               BDSPAC = MAX( 1, 5*M )
 | 
						|
               MINWRK = MAX( 3*M+NRHS, 3*M+N, BDSPAC )
 | 
						|
               IF( N.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*                 Path 2a - underdetermined, with many more columns
 | 
						|
*                 than rows
 | 
						|
*
 | 
						|
*                 Compute space needed for SGEBRD
 | 
						|
                  CALL SGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
 | 
						|
     $                      DUM(1), DUM(1), -1, INFO )
 | 
						|
                  LWORK_SGEBRD=DUM(1)
 | 
						|
*                 Compute space needed for SORMBR
 | 
						|
                  CALL SORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, 
 | 
						|
     $                DUM(1), B, LDB, DUM(1), -1, INFO )
 | 
						|
                  LWORK_SORMBR=DUM(1)
 | 
						|
*                 Compute space needed for SORGBR
 | 
						|
                  CALL SORGBR( 'P', M, M, M, A, LDA, DUM(1),
 | 
						|
     $                   DUM(1), -1, INFO )
 | 
						|
                  LWORK_SORGBR=DUM(1)
 | 
						|
*                 Compute space needed for SORMLQ
 | 
						|
                  CALL SORMLQ( 'L', 'T', N, NRHS, M, A, LDA, DUM(1),
 | 
						|
     $                 B, LDB, DUM(1), -1, INFO )
 | 
						|
                  LWORK_SORMLQ=DUM(1)
 | 
						|
*                 Compute total workspace needed 
 | 
						|
                  MAXWRK = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1,
 | 
						|
     $                                  -1 )
 | 
						|
                  MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_SGEBRD )
 | 
						|
                  MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_SORMBR )
 | 
						|
                  MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_SORGBR )
 | 
						|
                  MAXWRK = MAX( MAXWRK, M*M + M + BDSPAC )
 | 
						|
                  IF( NRHS.GT.1 ) THEN
 | 
						|
                     MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
 | 
						|
                  ELSE
 | 
						|
                     MAXWRK = MAX( MAXWRK, M*M + 2*M )
 | 
						|
                  END IF
 | 
						|
                  MAXWRK = MAX( MAXWRK, M + LWORK_SORMLQ )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Path 2 - underdetermined
 | 
						|
*
 | 
						|
*                 Compute space needed for SGEBRD
 | 
						|
                  CALL SGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
 | 
						|
     $                      DUM(1), DUM(1), -1, INFO )
 | 
						|
                  LWORK_SGEBRD=DUM(1)
 | 
						|
*                 Compute space needed for SORMBR
 | 
						|
                  CALL SORMBR( 'Q', 'L', 'T', M, NRHS, M, A, LDA, 
 | 
						|
     $                DUM(1), B, LDB, DUM(1), -1, INFO )
 | 
						|
                  LWORK_SORMBR=DUM(1)
 | 
						|
*                 Compute space needed for SORGBR
 | 
						|
                  CALL SORGBR( 'P', M, N, M, A, LDA, DUM(1),
 | 
						|
     $                   DUM(1), -1, INFO )
 | 
						|
                  LWORK_SORGBR=DUM(1)
 | 
						|
                  MAXWRK = 3*M + LWORK_SGEBRD
 | 
						|
                  MAXWRK = MAX( MAXWRK, 3*M + LWORK_SORMBR )
 | 
						|
                  MAXWRK = MAX( MAXWRK, 3*M + LWORK_SORGBR )
 | 
						|
                  MAXWRK = MAX( MAXWRK, BDSPAC )
 | 
						|
                  MAXWRK = MAX( MAXWRK, N*NRHS )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            MAXWRK = MAX( MINWRK, MAXWRK )
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = MAXWRK
 | 
						|
*
 | 
						|
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
 | 
						|
     $      INFO = -12
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGELSS', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | 
						|
         RANK = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine parameters
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SFMIN = SLAMCH( 'S' )
 | 
						|
      SMLNUM = SFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL SLABAD( SMLNUM, BIGNUM )
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
 | 
						|
      IASCL = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 1
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 2
 | 
						|
      ELSE IF( ANRM.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Matrix all zero. Return zero solution.
 | 
						|
*
 | 
						|
         CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | 
						|
         CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
 | 
						|
         RANK = 0
 | 
						|
         GO TO 70
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale B if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK )
 | 
						|
      IBSCL = 0
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 1
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Overdetermined case
 | 
						|
*
 | 
						|
      IF( M.GE.N ) THEN
 | 
						|
*
 | 
						|
*        Path 1 - overdetermined or exactly determined
 | 
						|
*
 | 
						|
         MM = M
 | 
						|
         IF( M.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*           Path 1a - overdetermined, with many more rows than columns
 | 
						|
*
 | 
						|
            MM = N
 | 
						|
            ITAU = 1
 | 
						|
            IWORK = ITAU + N
 | 
						|
*
 | 
						|
*           Compute A=Q*R
 | 
						|
*           (Workspace: need 2*N, prefer N+N*NB)
 | 
						|
*
 | 
						|
            CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
 | 
						|
     $                   LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*           Multiply B by transpose(Q)
 | 
						|
*           (Workspace: need N+NRHS, prefer N+NRHS*NB)
 | 
						|
*
 | 
						|
            CALL SORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
 | 
						|
     $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*           Zero out below R
 | 
						|
*
 | 
						|
            IF( N.GT.1 )
 | 
						|
     $         CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IE = 1
 | 
						|
         ITAUQ = IE + N
 | 
						|
         ITAUP = ITAUQ + N
 | 
						|
         IWORK = ITAUP + N
 | 
						|
*
 | 
						|
*        Bidiagonalize R in A
 | 
						|
*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
 | 
						|
*
 | 
						|
         CALL SGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | 
						|
     $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | 
						|
     $                INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors of R
 | 
						|
*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
 | 
						|
*
 | 
						|
         CALL SORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
 | 
						|
     $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Generate right bidiagonalizing vectors of R in A
 | 
						|
*        (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
 | 
						|
*
 | 
						|
         CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
 | 
						|
     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
         IWORK = IE + N
 | 
						|
*
 | 
						|
*        Perform bidiagonal QR iteration
 | 
						|
*          multiply B by transpose of left singular vectors
 | 
						|
*          compute right singular vectors in A
 | 
						|
*        (Workspace: need BDSPAC)
 | 
						|
*
 | 
						|
         CALL SBDSQR( 'U', N, N, 0, NRHS, S, WORK( IE ), A, LDA, DUM,
 | 
						|
     $                1, B, LDB, WORK( IWORK ), INFO )
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Multiply B by reciprocals of singular values
 | 
						|
*
 | 
						|
         THR = MAX( RCOND*S( 1 ), SFMIN )
 | 
						|
         IF( RCOND.LT.ZERO )
 | 
						|
     $      THR = MAX( EPS*S( 1 ), SFMIN )
 | 
						|
         RANK = 0
 | 
						|
         DO 10 I = 1, N
 | 
						|
            IF( S( I ).GT.THR ) THEN
 | 
						|
               CALL SRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | 
						|
               RANK = RANK + 1
 | 
						|
            ELSE
 | 
						|
               CALL SLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        Multiply B by right singular vectors
 | 
						|
*        (Workspace: need N, prefer N*NRHS)
 | 
						|
*
 | 
						|
         IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
 | 
						|
            CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, A, LDA, B, LDB, ZERO,
 | 
						|
     $                  WORK, LDB )
 | 
						|
            CALL SLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
 | 
						|
         ELSE IF( NRHS.GT.1 ) THEN
 | 
						|
            CHUNK = LWORK / N
 | 
						|
            DO 20 I = 1, NRHS, CHUNK
 | 
						|
               BL = MIN( NRHS-I+1, CHUNK )
 | 
						|
               CALL SGEMM( 'T', 'N', N, BL, N, ONE, A, LDA, B( 1, I ),
 | 
						|
     $                     LDB, ZERO, WORK, N )
 | 
						|
               CALL SLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            CALL SGEMV( 'T', N, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
 | 
						|
            CALL SCOPY( N, WORK, 1, B, 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
 | 
						|
     $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
 | 
						|
*
 | 
						|
*        Path 2a - underdetermined, with many more columns than rows
 | 
						|
*        and sufficient workspace for an efficient algorithm
 | 
						|
*
 | 
						|
         LDWORK = M
 | 
						|
         IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
 | 
						|
     $       M*LDA+M+M*NRHS ) )LDWORK = LDA
 | 
						|
         ITAU = 1
 | 
						|
         IWORK = M + 1
 | 
						|
*
 | 
						|
*        Compute A=L*Q
 | 
						|
*        (Workspace: need 2*M, prefer M+M*NB)
 | 
						|
*
 | 
						|
         CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
 | 
						|
     $                LWORK-IWORK+1, INFO )
 | 
						|
         IL = IWORK
 | 
						|
*
 | 
						|
*        Copy L to WORK(IL), zeroing out above it
 | 
						|
*
 | 
						|
         CALL SLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
 | 
						|
         CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
 | 
						|
     $                LDWORK )
 | 
						|
         IE = IL + LDWORK*M
 | 
						|
         ITAUQ = IE + M
 | 
						|
         ITAUP = ITAUQ + M
 | 
						|
         IWORK = ITAUP + M
 | 
						|
*
 | 
						|
*        Bidiagonalize L in WORK(IL)
 | 
						|
*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
 | 
						|
*
 | 
						|
         CALL SGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
 | 
						|
     $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
 | 
						|
     $                LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors of L
 | 
						|
*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
 | 
						|
*
 | 
						|
         CALL SORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
 | 
						|
     $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
 | 
						|
     $                LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Generate right bidiagonalizing vectors of R in WORK(IL)
 | 
						|
*        (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB)
 | 
						|
*
 | 
						|
         CALL SORGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
 | 
						|
     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
         IWORK = IE + M
 | 
						|
*
 | 
						|
*        Perform bidiagonal QR iteration,
 | 
						|
*           computing right singular vectors of L in WORK(IL) and
 | 
						|
*           multiplying B by transpose of left singular vectors
 | 
						|
*        (Workspace: need M*M+M+BDSPAC)
 | 
						|
*
 | 
						|
         CALL SBDSQR( 'U', M, M, 0, NRHS, S, WORK( IE ), WORK( IL ),
 | 
						|
     $                LDWORK, A, LDA, B, LDB, WORK( IWORK ), INFO )
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Multiply B by reciprocals of singular values
 | 
						|
*
 | 
						|
         THR = MAX( RCOND*S( 1 ), SFMIN )
 | 
						|
         IF( RCOND.LT.ZERO )
 | 
						|
     $      THR = MAX( EPS*S( 1 ), SFMIN )
 | 
						|
         RANK = 0
 | 
						|
         DO 30 I = 1, M
 | 
						|
            IF( S( I ).GT.THR ) THEN
 | 
						|
               CALL SRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | 
						|
               RANK = RANK + 1
 | 
						|
            ELSE
 | 
						|
               CALL SLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
         IWORK = IE
 | 
						|
*
 | 
						|
*        Multiply B by right singular vectors of L in WORK(IL)
 | 
						|
*        (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS)
 | 
						|
*
 | 
						|
         IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
 | 
						|
            CALL SGEMM( 'T', 'N', M, NRHS, M, ONE, WORK( IL ), LDWORK,
 | 
						|
     $                  B, LDB, ZERO, WORK( IWORK ), LDB )
 | 
						|
            CALL SLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
 | 
						|
         ELSE IF( NRHS.GT.1 ) THEN
 | 
						|
            CHUNK = ( LWORK-IWORK+1 ) / M
 | 
						|
            DO 40 I = 1, NRHS, CHUNK
 | 
						|
               BL = MIN( NRHS-I+1, CHUNK )
 | 
						|
               CALL SGEMM( 'T', 'N', M, BL, M, ONE, WORK( IL ), LDWORK,
 | 
						|
     $                     B( 1, I ), LDB, ZERO, WORK( IWORK ), M )
 | 
						|
               CALL SLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
 | 
						|
     $                      LDB )
 | 
						|
   40       CONTINUE
 | 
						|
         ELSE
 | 
						|
            CALL SGEMV( 'T', M, M, ONE, WORK( IL ), LDWORK, B( 1, 1 ),
 | 
						|
     $                  1, ZERO, WORK( IWORK ), 1 )
 | 
						|
            CALL SCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Zero out below first M rows of B
 | 
						|
*
 | 
						|
         CALL SLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
 | 
						|
         IWORK = ITAU + M
 | 
						|
*
 | 
						|
*        Multiply transpose(Q) by B
 | 
						|
*        (Workspace: need M+NRHS, prefer M+NRHS*NB)
 | 
						|
*
 | 
						|
         CALL SORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
 | 
						|
     $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Path 2 - remaining underdetermined cases
 | 
						|
*
 | 
						|
         IE = 1
 | 
						|
         ITAUQ = IE + M
 | 
						|
         ITAUP = ITAUQ + M
 | 
						|
         IWORK = ITAUP + M
 | 
						|
*
 | 
						|
*        Bidiagonalize A
 | 
						|
*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
 | 
						|
*
 | 
						|
         CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | 
						|
     $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | 
						|
     $                INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors
 | 
						|
*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
 | 
						|
*
 | 
						|
         CALL SORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
 | 
						|
     $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Generate right bidiagonalizing vectors in A
 | 
						|
*        (Workspace: need 4*M, prefer 3*M+M*NB)
 | 
						|
*
 | 
						|
         CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
 | 
						|
     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
         IWORK = IE + M
 | 
						|
*
 | 
						|
*        Perform bidiagonal QR iteration,
 | 
						|
*           computing right singular vectors of A in A and
 | 
						|
*           multiplying B by transpose of left singular vectors
 | 
						|
*        (Workspace: need BDSPAC)
 | 
						|
*
 | 
						|
         CALL SBDSQR( 'L', M, N, 0, NRHS, S, WORK( IE ), A, LDA, DUM,
 | 
						|
     $                1, B, LDB, WORK( IWORK ), INFO )
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Multiply B by reciprocals of singular values
 | 
						|
*
 | 
						|
         THR = MAX( RCOND*S( 1 ), SFMIN )
 | 
						|
         IF( RCOND.LT.ZERO )
 | 
						|
     $      THR = MAX( EPS*S( 1 ), SFMIN )
 | 
						|
         RANK = 0
 | 
						|
         DO 50 I = 1, M
 | 
						|
            IF( S( I ).GT.THR ) THEN
 | 
						|
               CALL SRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | 
						|
               RANK = RANK + 1
 | 
						|
            ELSE
 | 
						|
               CALL SLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
*        Multiply B by right singular vectors of A
 | 
						|
*        (Workspace: need N, prefer N*NRHS)
 | 
						|
*
 | 
						|
         IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
 | 
						|
            CALL SGEMM( 'T', 'N', N, NRHS, M, ONE, A, LDA, B, LDB, ZERO,
 | 
						|
     $                  WORK, LDB )
 | 
						|
            CALL SLACPY( 'F', N, NRHS, WORK, LDB, B, LDB )
 | 
						|
         ELSE IF( NRHS.GT.1 ) THEN
 | 
						|
            CHUNK = LWORK / N
 | 
						|
            DO 60 I = 1, NRHS, CHUNK
 | 
						|
               BL = MIN( NRHS-I+1, CHUNK )
 | 
						|
               CALL SGEMM( 'T', 'N', N, BL, M, ONE, A, LDA, B( 1, I ),
 | 
						|
     $                     LDB, ZERO, WORK, N )
 | 
						|
               CALL SLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            CALL SGEMV( 'T', M, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
 | 
						|
            CALL SCOPY( N, WORK, 1, B, 1 )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling
 | 
						|
*
 | 
						|
      IF( IASCL.EQ.1 ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
 | 
						|
     $                INFO )
 | 
						|
      ELSE IF( IASCL.EQ.2 ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
 | 
						|
     $                INFO )
 | 
						|
      END IF
 | 
						|
      IF( IBSCL.EQ.1 ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      ELSE IF( IBSCL.EQ.2 ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   70 CONTINUE
 | 
						|
      WORK( 1 ) = MAXWRK
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGELSS
 | 
						|
*
 | 
						|
      END
 |