372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAED0 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed0.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed0.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed0.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
 | 
						|
*                          IWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDQ, LDQS, N, QSIZ
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               D( * ), E( * ), RWORK( * )
 | 
						|
*       COMPLEX            Q( LDQ, * ), QSTORE( LDQS, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> Using the divide and conquer method, CLAED0 computes all eigenvalues
 | 
						|
*> of a symmetric tridiagonal matrix which is one diagonal block of
 | 
						|
*> those from reducing a dense or band Hermitian matrix and
 | 
						|
*> corresponding eigenvectors of the dense or band matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] QSIZ
 | 
						|
*> \verbatim
 | 
						|
*>          QSIZ is INTEGER
 | 
						|
*>         The dimension of the unitary matrix used to reduce
 | 
						|
*>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>         On entry, the diagonal elements of the tridiagonal matrix.
 | 
						|
*>         On exit, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>         On entry, the off-diagonal elements of the tridiagonal matrix.
 | 
						|
*>         On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is COMPLEX array, dimension (LDQ,N)
 | 
						|
*>         On entry, Q must contain an QSIZ x N matrix whose columns
 | 
						|
*>         unitarily orthonormal. It is a part of the unitary matrix
 | 
						|
*>         that reduces the full dense Hermitian matrix to a
 | 
						|
*>         (reducible) symmetric tridiagonal matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>         The leading dimension of the array Q.  LDQ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array,
 | 
						|
*>         the dimension of IWORK must be at least
 | 
						|
*>                      6 + 6*N + 5*N*lg N
 | 
						|
*>                      ( lg( N ) = smallest integer k
 | 
						|
*>                                  such that 2^k >= N )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array,
 | 
						|
*>                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
 | 
						|
*>                        ( lg( N ) = smallest integer k
 | 
						|
*>                                    such that 2^k >= N )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] QSTORE
 | 
						|
*> \verbatim
 | 
						|
*>          QSTORE is COMPLEX array, dimension (LDQS, N)
 | 
						|
*>         Used to store parts of
 | 
						|
*>         the eigenvector matrix when the updating matrix multiplies
 | 
						|
*>         take place.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQS
 | 
						|
*> \verbatim
 | 
						|
*>          LDQS is INTEGER
 | 
						|
*>         The leading dimension of the array QSTORE.
 | 
						|
*>         LDQS >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  The algorithm failed to compute an eigenvalue while
 | 
						|
*>                working on the submatrix lying in rows and columns
 | 
						|
*>                INFO/(N+1) through mod(INFO,N+1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDQ, LDQS, N, QSIZ
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               D( * ), E( * ), RWORK( * )
 | 
						|
      COMPLEX            Q( LDQ, * ), QSTORE( LDQS, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*  Warning:      N could be as big as QSIZ!
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               TWO
 | 
						|
      PARAMETER          ( TWO = 2.E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
 | 
						|
     $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
 | 
						|
     $                   J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
 | 
						|
     $                   SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
 | 
						|
      REAL               TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CLACRM, CLAED7, SCOPY, SSTEQR, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, INT, LOG, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
 | 
						|
*        INFO = -1
 | 
						|
*     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
 | 
						|
*    $        THEN
 | 
						|
      IF( QSIZ.LT.MAX( 0, N ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLAED0', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      SMLSIZ = ILAENV( 9, 'CLAED0', ' ', 0, 0, 0, 0 )
 | 
						|
*
 | 
						|
*     Determine the size and placement of the submatrices, and save in
 | 
						|
*     the leading elements of IWORK.
 | 
						|
*
 | 
						|
      IWORK( 1 ) = N
 | 
						|
      SUBPBS = 1
 | 
						|
      TLVLS = 0
 | 
						|
   10 CONTINUE
 | 
						|
      IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
 | 
						|
         DO 20 J = SUBPBS, 1, -1
 | 
						|
            IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
 | 
						|
            IWORK( 2*J-1 ) = IWORK( J ) / 2
 | 
						|
   20    CONTINUE
 | 
						|
         TLVLS = TLVLS + 1
 | 
						|
         SUBPBS = 2*SUBPBS
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
      DO 30 J = 2, SUBPBS
 | 
						|
         IWORK( J ) = IWORK( J ) + IWORK( J-1 )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
 | 
						|
*     using rank-1 modifications (cuts).
 | 
						|
*
 | 
						|
      SPM1 = SUBPBS - 1
 | 
						|
      DO 40 I = 1, SPM1
 | 
						|
         SUBMAT = IWORK( I ) + 1
 | 
						|
         SMM1 = SUBMAT - 1
 | 
						|
         D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
 | 
						|
         D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      INDXQ = 4*N + 3
 | 
						|
*
 | 
						|
*     Set up workspaces for eigenvalues only/accumulate new vectors
 | 
						|
*     routine
 | 
						|
*
 | 
						|
      TEMP = LOG( REAL( N ) ) / LOG( TWO )
 | 
						|
      LGN = INT( TEMP )
 | 
						|
      IF( 2**LGN.LT.N )
 | 
						|
     $   LGN = LGN + 1
 | 
						|
      IF( 2**LGN.LT.N )
 | 
						|
     $   LGN = LGN + 1
 | 
						|
      IPRMPT = INDXQ + N + 1
 | 
						|
      IPERM = IPRMPT + N*LGN
 | 
						|
      IQPTR = IPERM + N*LGN
 | 
						|
      IGIVPT = IQPTR + N + 2
 | 
						|
      IGIVCL = IGIVPT + N*LGN
 | 
						|
*
 | 
						|
      IGIVNM = 1
 | 
						|
      IQ = IGIVNM + 2*N*LGN
 | 
						|
      IWREM = IQ + N**2 + 1
 | 
						|
*     Initialize pointers
 | 
						|
      DO 50 I = 0, SUBPBS
 | 
						|
         IWORK( IPRMPT+I ) = 1
 | 
						|
         IWORK( IGIVPT+I ) = 1
 | 
						|
   50 CONTINUE
 | 
						|
      IWORK( IQPTR ) = 1
 | 
						|
*
 | 
						|
*     Solve each submatrix eigenproblem at the bottom of the divide and
 | 
						|
*     conquer tree.
 | 
						|
*
 | 
						|
      CURR = 0
 | 
						|
      DO 70 I = 0, SPM1
 | 
						|
         IF( I.EQ.0 ) THEN
 | 
						|
            SUBMAT = 1
 | 
						|
            MATSIZ = IWORK( 1 )
 | 
						|
         ELSE
 | 
						|
            SUBMAT = IWORK( I ) + 1
 | 
						|
            MATSIZ = IWORK( I+1 ) - IWORK( I )
 | 
						|
         END IF
 | 
						|
         LL = IQ - 1 + IWORK( IQPTR+CURR )
 | 
						|
         CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
 | 
						|
     $                RWORK( LL ), MATSIZ, RWORK, INFO )
 | 
						|
         CALL CLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
 | 
						|
     $                MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
 | 
						|
     $                RWORK( IWREM ) )
 | 
						|
         IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
 | 
						|
         CURR = CURR + 1
 | 
						|
         IF( INFO.GT.0 ) THEN
 | 
						|
            INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         K = 1
 | 
						|
         DO 60 J = SUBMAT, IWORK( I+1 )
 | 
						|
            IWORK( INDXQ+J ) = K
 | 
						|
            K = K + 1
 | 
						|
   60    CONTINUE
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
*     Successively merge eigensystems of adjacent submatrices
 | 
						|
*     into eigensystem for the corresponding larger matrix.
 | 
						|
*
 | 
						|
*     while ( SUBPBS > 1 )
 | 
						|
*
 | 
						|
      CURLVL = 1
 | 
						|
   80 CONTINUE
 | 
						|
      IF( SUBPBS.GT.1 ) THEN
 | 
						|
         SPM2 = SUBPBS - 2
 | 
						|
         DO 90 I = 0, SPM2, 2
 | 
						|
            IF( I.EQ.0 ) THEN
 | 
						|
               SUBMAT = 1
 | 
						|
               MATSIZ = IWORK( 2 )
 | 
						|
               MSD2 = IWORK( 1 )
 | 
						|
               CURPRB = 0
 | 
						|
            ELSE
 | 
						|
               SUBMAT = IWORK( I ) + 1
 | 
						|
               MATSIZ = IWORK( I+2 ) - IWORK( I )
 | 
						|
               MSD2 = MATSIZ / 2
 | 
						|
               CURPRB = CURPRB + 1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
 | 
						|
*     into an eigensystem of size MATSIZ.  CLAED7 handles the case
 | 
						|
*     when the eigenvectors of a full or band Hermitian matrix (which
 | 
						|
*     was reduced to tridiagonal form) are desired.
 | 
						|
*
 | 
						|
*     I am free to use Q as a valuable working space until Loop 150.
 | 
						|
*
 | 
						|
            CALL CLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
 | 
						|
     $                   D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
 | 
						|
     $                   E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
 | 
						|
     $                   RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
 | 
						|
     $                   IWORK( IPERM ), IWORK( IGIVPT ),
 | 
						|
     $                   IWORK( IGIVCL ), RWORK( IGIVNM ),
 | 
						|
     $                   Q( 1, SUBMAT ), RWORK( IWREM ),
 | 
						|
     $                   IWORK( SUBPBS+1 ), INFO )
 | 
						|
            IF( INFO.GT.0 ) THEN
 | 
						|
               INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
            IWORK( I / 2+1 ) = IWORK( I+2 )
 | 
						|
   90    CONTINUE
 | 
						|
         SUBPBS = SUBPBS / 2
 | 
						|
         CURLVL = CURLVL + 1
 | 
						|
         GO TO 80
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     end while
 | 
						|
*
 | 
						|
*     Re-merge the eigenvalues/vectors which were deflated at the final
 | 
						|
*     merge step.
 | 
						|
*
 | 
						|
      DO 100 I = 1, N
 | 
						|
         J = IWORK( INDXQ+I )
 | 
						|
         RWORK( I ) = D( J )
 | 
						|
         CALL CCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
 | 
						|
  100 CONTINUE
 | 
						|
      CALL SCOPY( N, RWORK, 1, D, 1 )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAED0
 | 
						|
*
 | 
						|
      END
 |