343 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			343 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE STBMVF( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX )
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INCX, K, LDA, N
 | |
|       CHARACTER*1        DIAG, TRANS, UPLO
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), X( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  STBMV  performs one of the matrix-vector operations
 | |
| *
 | |
| *     x := A*x,   or   x := A'*x,
 | |
| *
 | |
| *  where x is an n element vector and  A is an n by n unit, or non-unit,
 | |
| *  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On entry, UPLO specifies whether the matrix is an upper or
 | |
| *           lower triangular matrix as follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry, TRANS specifies the operation to be performed as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'   x := A*x.
 | |
| *
 | |
| *              TRANS = 'T' or 't'   x := A'*x.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'   x := A'*x.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  DIAG   - CHARACTER*1.
 | |
| *           On entry, DIAG specifies whether or not A is unit
 | |
| *           triangular as follows:
 | |
| *
 | |
| *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *
 | |
| *              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *                                  triangular.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the order of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  K      - INTEGER.
 | |
| *           On entry with UPLO = 'U' or 'u', K specifies the number of
 | |
| *           super-diagonals of the matrix A.
 | |
| *           On entry with UPLO = 'L' or 'l', K specifies the number of
 | |
| *           sub-diagonals of the matrix A.
 | |
| *           K must satisfy  0 .le. K.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - REAL             array of DIMENSION ( LDA, n ).
 | |
| *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
 | |
| *           by n part of the array A must contain the upper triangular
 | |
| *           band part of the matrix of coefficients, supplied column by
 | |
| *           column, with the leading diagonal of the matrix in row
 | |
| *           ( k + 1 ) of the array, the first super-diagonal starting at
 | |
| *           position 2 in row k, and so on. The top left k by k triangle
 | |
| *           of the array A is not referenced.
 | |
| *           The following program segment will transfer an upper
 | |
| *           triangular band matrix from conventional full matrix storage
 | |
| *           to band storage:
 | |
| *
 | |
| *                 DO 20, J = 1, N
 | |
| *                    M = K + 1 - J
 | |
| *                    DO 10, I = MAX( 1, J - K ), J
 | |
| *                       A( M + I, J ) = matrix( I, J )
 | |
| *              10    CONTINUE
 | |
| *              20 CONTINUE
 | |
| *
 | |
| *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
 | |
| *           by n part of the array A must contain the lower triangular
 | |
| *           band part of the matrix of coefficients, supplied column by
 | |
| *           column, with the leading diagonal of the matrix in row 1 of
 | |
| *           the array, the first sub-diagonal starting at position 1 in
 | |
| *           row 2, and so on. The bottom right k by k triangle of the
 | |
| *           array A is not referenced.
 | |
| *           The following program segment will transfer a lower
 | |
| *           triangular band matrix from conventional full matrix storage
 | |
| *           to band storage:
 | |
| *
 | |
| *                 DO 20, J = 1, N
 | |
| *                    M = 1 - J
 | |
| *                    DO 10, I = J, MIN( N, J + K )
 | |
| *                       A( M + I, J ) = matrix( I, J )
 | |
| *              10    CONTINUE
 | |
| *              20 CONTINUE
 | |
| *
 | |
| *           Note that when DIAG = 'U' or 'u' the elements of the array A
 | |
| *           corresponding to the diagonal elements of the matrix are not
 | |
| *           referenced, but are assumed to be unity.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program. LDA must be at least
 | |
| *           ( k + 1 ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - REAL             array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *           Before entry, the incremented array X must contain the n
 | |
| *           element vector x. On exit, X is overwritten with the
 | |
| *           tranformed vector x.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER        ( ZERO = 0.0E+0 )
 | |
| *     .. Local Scalars ..
 | |
|       REAL               TEMP
 | |
|       INTEGER            I, INFO, IX, J, JX, KPLUS1, KX, L
 | |
|       LOGICAL            NOUNIT
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( UPLO , 'U' ).AND.
 | |
|      $         .NOT.LSAME( UPLO , 'L' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'T' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'C' )      )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
 | |
|      $         .NOT.LSAME( DIAG , 'N' )      )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( K.LT.0 )THEN
 | |
|          INFO = 5
 | |
|       ELSE IF( LDA.LT.( K + 1 ) )THEN
 | |
|          INFO = 7
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'STBMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       NOUNIT = LSAME( DIAG, 'N' )
 | |
| *
 | |
| *     Set up the start point in X if the increment is not unity. This
 | |
| *     will be  ( N - 1 )*INCX   too small for descending loops.
 | |
| *
 | |
|       IF( INCX.LE.0 )THEN
 | |
|          KX = 1 - ( N - 1 )*INCX
 | |
|       ELSE IF( INCX.NE.1 )THEN
 | |
|          KX = 1
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through A.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) )THEN
 | |
| *
 | |
| *         Form  x := A*x.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) )THEN
 | |
|             KPLUS1 = K + 1
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 20, J = 1, N
 | |
|                   IF( X( J ).NE.ZERO )THEN
 | |
|                      TEMP = X( J )
 | |
|                      L    = KPLUS1 - J
 | |
|                      DO 10, I = MAX( 1, J - K ), J - 1
 | |
|                         X( I ) = X( I ) + TEMP*A( L + I, J )
 | |
|    10                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( J ) = X( J )*A( KPLUS1, J )
 | |
|                   END IF
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX
 | |
|                DO 40, J = 1, N
 | |
|                   IF( X( JX ).NE.ZERO )THEN
 | |
|                      TEMP = X( JX )
 | |
|                      IX   = KX
 | |
|                      L    = KPLUS1  - J
 | |
|                      DO 30, I = MAX( 1, J - K ), J - 1
 | |
|                         X( IX ) = X( IX ) + TEMP*A( L + I, J )
 | |
|                         IX      = IX      + INCX
 | |
|    30                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( JX ) = X( JX )*A( KPLUS1, J )
 | |
|                   END IF
 | |
|                   JX = JX + INCX
 | |
|                   IF( J.GT.K )
 | |
|      $               KX = KX + INCX
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 60, J = N, 1, -1
 | |
|                   IF( X( J ).NE.ZERO )THEN
 | |
|                      TEMP = X( J )
 | |
|                      L    = 1      - J
 | |
|                      DO 50, I = MIN( N, J + K ), J + 1, -1
 | |
|                         X( I ) = X( I ) + TEMP*A( L + I, J )
 | |
|    50                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( J ) = X( J )*A( 1, J )
 | |
|                   END IF
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                KX = KX + ( N - 1 )*INCX
 | |
|                JX = KX
 | |
|                DO 80, J = N, 1, -1
 | |
|                   IF( X( JX ).NE.ZERO )THEN
 | |
|                      TEMP = X( JX )
 | |
|                      IX   = KX
 | |
|                      L    = 1       - J
 | |
|                      DO 70, I = MIN( N, J + K ), J + 1, -1
 | |
|                         X( IX ) = X( IX ) + TEMP*A( L + I, J )
 | |
|                         IX      = IX      - INCX
 | |
|    70                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( JX ) = X( JX )*A( 1, J )
 | |
|                   END IF
 | |
|                   JX = JX - INCX
 | |
|                   IF( ( N - J ).GE.K )
 | |
|      $               KX = KX - INCX
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  x := A'*x.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) )THEN
 | |
|             KPLUS1 = K + 1
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 100, J = N, 1, -1
 | |
|                   TEMP = X( J )
 | |
|                   L    = KPLUS1 - J
 | |
|                   IF( NOUNIT )
 | |
|      $               TEMP = TEMP*A( KPLUS1, J )
 | |
|                   DO 90, I = J - 1, MAX( 1, J - K ), -1
 | |
|                      TEMP = TEMP + A( L + I, J )*X( I )
 | |
|    90             CONTINUE
 | |
|                   X( J ) = TEMP
 | |
|   100          CONTINUE
 | |
|             ELSE
 | |
|                KX = KX + ( N - 1 )*INCX
 | |
|                JX = KX
 | |
|                DO 120, J = N, 1, -1
 | |
|                   TEMP = X( JX )
 | |
|                   KX   = KX      - INCX
 | |
|                   IX   = KX
 | |
|                   L    = KPLUS1  - J
 | |
|                   IF( NOUNIT )
 | |
|      $               TEMP = TEMP*A( KPLUS1, J )
 | |
|                   DO 110, I = J - 1, MAX( 1, J - K ), -1
 | |
|                      TEMP = TEMP + A( L + I, J )*X( IX )
 | |
|                      IX   = IX   - INCX
 | |
|   110             CONTINUE
 | |
|                   X( JX ) = TEMP
 | |
|                   JX      = JX   - INCX
 | |
|   120          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 140, J = 1, N
 | |
|                   TEMP = X( J )
 | |
|                   L    = 1      - J
 | |
|                   IF( NOUNIT )
 | |
|      $               TEMP = TEMP*A( 1, J )
 | |
|                   DO 130, I = J + 1, MIN( N, J + K )
 | |
|                      TEMP = TEMP + A( L + I, J )*X( I )
 | |
|   130             CONTINUE
 | |
|                   X( J ) = TEMP
 | |
|   140          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX
 | |
|                DO 160, J = 1, N
 | |
|                   TEMP = X( JX )
 | |
|                   KX   = KX      + INCX
 | |
|                   IX   = KX
 | |
|                   L    = 1       - J
 | |
|                   IF( NOUNIT )
 | |
|      $               TEMP = TEMP*A( 1, J )
 | |
|                   DO 150, I = J + 1, MIN( N, J + K )
 | |
|                      TEMP = TEMP + A( L + I, J )*X( IX )
 | |
|                      IX   = IX   + INCX
 | |
|   150             CONTINUE
 | |
|                   X( JX ) = TEMP
 | |
|                   JX      = JX   + INCX
 | |
|   160          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STBMV .
 | |
| *
 | |
|       END
 |