1382 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1382 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZTGSEN */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZTGSEN + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsen.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsen.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsen.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, */
 | |
| /*                          ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, */
 | |
| /*                          WORK, LWORK, IWORK, LIWORK, INFO ) */
 | |
| 
 | |
| /*       LOGICAL            WANTQ, WANTZ */
 | |
| /*       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK, */
 | |
| /*      $                   M, N */
 | |
| /*       DOUBLE PRECISION   PL, PR */
 | |
| /*       LOGICAL            SELECT( * ) */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   DIF( * ) */
 | |
| /*       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ), */
 | |
| /*      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZTGSEN reorders the generalized Schur decomposition of a complex */
 | |
| /* > matrix pair (A, B) (in terms of an unitary equivalence trans- */
 | |
| /* > formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues */
 | |
| /* > appears in the leading diagonal blocks of the pair (A,B). The leading */
 | |
| /* > columns of Q and Z form unitary bases of the corresponding left and */
 | |
| /* > right eigenspaces (deflating subspaces). (A, B) must be in */
 | |
| /* > generalized Schur canonical form, that is, A and B are both upper */
 | |
| /* > triangular. */
 | |
| /* > */
 | |
| /* > ZTGSEN also computes the generalized eigenvalues */
 | |
| /* > */
 | |
| /* >          w(j)= ALPHA(j) / BETA(j) */
 | |
| /* > */
 | |
| /* > of the reordered matrix pair (A, B). */
 | |
| /* > */
 | |
| /* > Optionally, the routine computes estimates of reciprocal condition */
 | |
| /* > numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */
 | |
| /* > (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */
 | |
| /* > between the matrix pairs (A11, B11) and (A22,B22) that correspond to */
 | |
| /* > the selected cluster and the eigenvalues outside the cluster, resp., */
 | |
| /* > and norms of "projections" onto left and right eigenspaces w.r.t. */
 | |
| /* > the selected cluster in the (1,1)-block. */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] IJOB */
 | |
| /* > \verbatim */
 | |
| /* >          IJOB is INTEGER */
 | |
| /* >          Specifies whether condition numbers are required for the */
 | |
| /* >          cluster of eigenvalues (PL and PR) or the deflating subspaces */
 | |
| /* >          (Difu and Difl): */
 | |
| /* >           =0: Only reorder w.r.t. SELECT. No extras. */
 | |
| /* >           =1: Reciprocal of norms of "projections" onto left and right */
 | |
| /* >               eigenspaces w.r.t. the selected cluster (PL and PR). */
 | |
| /* >           =2: Upper bounds on Difu and Difl. F-norm-based estimate */
 | |
| /* >               (DIF(1:2)). */
 | |
| /* >           =3: Estimate of Difu and Difl. 1-norm-based estimate */
 | |
| /* >               (DIF(1:2)). */
 | |
| /* >               About 5 times as expensive as IJOB = 2. */
 | |
| /* >           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */
 | |
| /* >               version to get it all. */
 | |
| /* >           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WANTQ */
 | |
| /* > \verbatim */
 | |
| /* >          WANTQ is LOGICAL */
 | |
| /* >          .TRUE. : update the left transformation matrix Q; */
 | |
| /* >          .FALSE.: do not update Q. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WANTZ */
 | |
| /* > \verbatim */
 | |
| /* >          WANTZ is LOGICAL */
 | |
| /* >          .TRUE. : update the right transformation matrix Z; */
 | |
| /* >          .FALSE.: do not update Z. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SELECT */
 | |
| /* > \verbatim */
 | |
| /* >          SELECT is LOGICAL array, dimension (N) */
 | |
| /* >          SELECT specifies the eigenvalues in the selected cluster. To */
 | |
| /* >          select an eigenvalue w(j), SELECT(j) must be set to */
 | |
| /* >          .TRUE.. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A and B. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension(LDA,N) */
 | |
| /* >          On entry, the upper triangular matrix A, in generalized */
 | |
| /* >          Schur canonical form. */
 | |
| /* >          On exit, A is overwritten by the reordered matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimension(LDB,N) */
 | |
| /* >          On entry, the upper triangular matrix B, in generalized */
 | |
| /* >          Schur canonical form. */
 | |
| /* >          On exit, B is overwritten by the reordered matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B. LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is COMPLEX*16 array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is COMPLEX*16 array, dimension (N) */
 | |
| /* > */
 | |
| /* >          The diagonal elements of A and B, respectively, */
 | |
| /* >          when the pair (A,B) has been reduced to generalized Schur */
 | |
| /* >          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized */
 | |
| /* >          eigenvalues. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is COMPLEX*16 array, dimension (LDQ,N) */
 | |
| /* >          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */
 | |
| /* >          On exit, Q has been postmultiplied by the left unitary */
 | |
| /* >          transformation matrix which reorder (A, B); The leading M */
 | |
| /* >          columns of Q form orthonormal bases for the specified pair of */
 | |
| /* >          left eigenspaces (deflating subspaces). */
 | |
| /* >          If WANTQ = .FALSE., Q is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q. LDQ >= 1. */
 | |
| /* >          If WANTQ = .TRUE., LDQ >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is COMPLEX*16 array, dimension (LDZ,N) */
 | |
| /* >          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */
 | |
| /* >          On exit, Z has been postmultiplied by the left unitary */
 | |
| /* >          transformation matrix which reorder (A, B); The leading M */
 | |
| /* >          columns of Z form orthonormal bases for the specified pair of */
 | |
| /* >          left eigenspaces (deflating subspaces). */
 | |
| /* >          If WANTZ = .FALSE., Z is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z. LDZ >= 1. */
 | |
| /* >          If WANTZ = .TRUE., LDZ >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The dimension of the specified pair of left and right */
 | |
| /* >          eigenspaces, (deflating subspaces) 0 <= M <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] PL */
 | |
| /* > \verbatim */
 | |
| /* >          PL is DOUBLE PRECISION */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] PR */
 | |
| /* > \verbatim */
 | |
| /* >          PR is DOUBLE PRECISION */
 | |
| /* > */
 | |
| /* >          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */
 | |
| /* >          reciprocal  of the norm of "projections" onto left and right */
 | |
| /* >          eigenspace with respect to the selected cluster. */
 | |
| /* >          0 < PL, PR <= 1. */
 | |
| /* >          If M = 0 or M = N, PL = PR  = 1. */
 | |
| /* >          If IJOB = 0, 2 or 3 PL, PR are not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DIF */
 | |
| /* > \verbatim */
 | |
| /* >          DIF is DOUBLE PRECISION array, dimension (2). */
 | |
| /* >          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */
 | |
| /* >          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */
 | |
| /* >          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */
 | |
| /* >          estimates of Difu and Difl, computed using reversed */
 | |
| /* >          communication with ZLACN2. */
 | |
| /* >          If M = 0 or N, DIF(1:2) = F-norm([A, B]). */
 | |
| /* >          If IJOB = 0 or 1, DIF is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. LWORK >=  1 */
 | |
| /* >          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M) */
 | |
| /* >          If IJOB = 3 or 5, LWORK >=  4*M*(N-M) */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
 | |
| /* >          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LIWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LIWORK is INTEGER */
 | |
| /* >          The dimension of the array IWORK. LIWORK >= 1. */
 | |
| /* >          If IJOB = 1, 2 or 4, LIWORK >=  N+2; */
 | |
| /* >          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M)); */
 | |
| /* > */
 | |
| /* >          If LIWORK = -1, then a workspace query is assumed; the */
 | |
| /* >          routine only calculates the optimal size of the IWORK array, */
 | |
| /* >          returns this value as the first entry of the IWORK array, and */
 | |
| /* >          no error message related to LIWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >            =0: Successful exit. */
 | |
| /* >            <0: If INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >            =1: Reordering of (A, B) failed because the transformed */
 | |
| /* >                matrix pair (A, B) would be too far from generalized */
 | |
| /* >                Schur form; the problem is very ill-conditioned. */
 | |
| /* >                (A, B) may have been partially reordered. */
 | |
| /* >                If requested, 0 is returned in DIF(*), PL and PR. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  ZTGSEN first collects the selected eigenvalues by computing unitary */
 | |
| /* >  U and W that move them to the top left corner of (A, B). In other */
 | |
| /* >  words, the selected eigenvalues are the eigenvalues of (A11, B11) in */
 | |
| /* > */
 | |
| /* >              U**H*(A, B)*W = (A11 A12) (B11 B12) n1 */
 | |
| /* >                              ( 0  A22),( 0  B22) n2 */
 | |
| /* >                                n1  n2    n1  n2 */
 | |
| /* > */
 | |
| /* >  where N = n1+n2 and U**H means the conjugate transpose of U. The first */
 | |
| /* >  n1 columns of U and W span the specified pair of left and right */
 | |
| /* >  eigenspaces (deflating subspaces) of (A, B). */
 | |
| /* > */
 | |
| /* >  If (A, B) has been obtained from the generalized real Schur */
 | |
| /* >  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the */
 | |
| /* >  reordered generalized Schur form of (C, D) is given by */
 | |
| /* > */
 | |
| /* >           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H, */
 | |
| /* > */
 | |
| /* >  and the first n1 columns of Q*U and Z*W span the corresponding */
 | |
| /* >  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */
 | |
| /* > */
 | |
| /* >  Note that if the selected eigenvalue is sufficiently ill-conditioned, */
 | |
| /* >  then its value may differ significantly from its value before */
 | |
| /* >  reordering. */
 | |
| /* > */
 | |
| /* >  The reciprocal condition numbers of the left and right eigenspaces */
 | |
| /* >  spanned by the first n1 columns of U and W (or Q*U and Z*W) may */
 | |
| /* >  be returned in DIF(1:2), corresponding to Difu and Difl, resp. */
 | |
| /* > */
 | |
| /* >  The Difu and Difl are defined as: */
 | |
| /* > */
 | |
| /* >       Difu[(A11, B11), (A22, B22)] = sigma-f2cmin( Zu ) */
 | |
| /* >  and */
 | |
| /* >       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */
 | |
| /* > */
 | |
| /* >  where sigma-f2cmin(Zu) is the smallest singular value of the */
 | |
| /* >  (2*n1*n2)-by-(2*n1*n2) matrix */
 | |
| /* > */
 | |
| /* >       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ] */
 | |
| /* >            [ kron(In2, B11)  -kron(B22**H, In1) ]. */
 | |
| /* > */
 | |
| /* >  Here, Inx is the identity matrix of size nx and A22**H is the */
 | |
| /* >  conjugate transpose of A22. kron(X, Y) is the Kronecker product between */
 | |
| /* >  the matrices X and Y. */
 | |
| /* > */
 | |
| /* >  When DIF(2) is small, small changes in (A, B) can cause large changes */
 | |
| /* >  in the deflating subspace. An approximate (asymptotic) bound on the */
 | |
| /* >  maximum angular error in the computed deflating subspaces is */
 | |
| /* > */
 | |
| /* >       EPS * norm((A, B)) / DIF(2), */
 | |
| /* > */
 | |
| /* >  where EPS is the machine precision. */
 | |
| /* > */
 | |
| /* >  The reciprocal norm of the projectors on the left and right */
 | |
| /* >  eigenspaces associated with (A11, B11) may be returned in PL and PR. */
 | |
| /* >  They are computed as follows. First we compute L and R so that */
 | |
| /* >  P*(A, B)*Q is block diagonal, where */
 | |
| /* > */
 | |
| /* >       P = ( I -L ) n1           Q = ( I R ) n1 */
 | |
| /* >           ( 0  I ) n2    and        ( 0 I ) n2 */
 | |
| /* >             n1 n2                    n1 n2 */
 | |
| /* > */
 | |
| /* >  and (L, R) is the solution to the generalized Sylvester equation */
 | |
| /* > */
 | |
| /* >       A11*R - L*A22 = -A12 */
 | |
| /* >       B11*R - L*B22 = -B12 */
 | |
| /* > */
 | |
| /* >  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */
 | |
| /* >  An approximate (asymptotic) bound on the average absolute error of */
 | |
| /* >  the selected eigenvalues is */
 | |
| /* > */
 | |
| /* >       EPS * norm((A, B)) / PL. */
 | |
| /* > */
 | |
| /* >  There are also global error bounds which valid for perturbations up */
 | |
| /* >  to a certain restriction:  A lower bound (x) on the smallest */
 | |
| /* >  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */
 | |
| /* >  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */
 | |
| /* >  (i.e. (A + E, B + F), is */
 | |
| /* > */
 | |
| /* >   x = f2cmin(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*f2cmax(1/PL,1/PR)). */
 | |
| /* > */
 | |
| /* >  An approximate bound on x can be computed from DIF(1:2), PL and PR. */
 | |
| /* > */
 | |
| /* >  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */
 | |
| /* >  (L', R') and unperturbed (L, R) left and right deflating subspaces */
 | |
| /* >  associated with the selected cluster in the (1,1)-blocks can be */
 | |
| /* >  bounded as */
 | |
| /* > */
 | |
| /* >   f2cmax-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) */
 | |
| /* >   f2cmax-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) */
 | |
| /* > */
 | |
| /* >  See LAPACK User's Guide section 4.11 or the following references */
 | |
| /* >  for more information. */
 | |
| /* > */
 | |
| /* >  Note that if the default method for computing the Frobenius-norm- */
 | |
| /* >  based estimate DIF is not wanted (see ZLATDF), then the parameter */
 | |
| /* >  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF */
 | |
| /* >  (IJOB = 2 will be used)). See ZTGSYL for more details. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
 | |
| /* >     Umea University, S-901 87 Umea, Sweden. */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* >  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
 | |
| /* >      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
 | |
| /* >      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
 | |
| /* >      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
 | |
| /* > \n */
 | |
| /* >  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
 | |
| /* >      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
 | |
| /* >      Estimation: Theory, Algorithms and Software, Report */
 | |
| /* >      UMINF - 94.04, Department of Computing Science, Umea University, */
 | |
| /* >      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. */
 | |
| /* >      To appear in Numerical Algorithms, 1996. */
 | |
| /* > \n */
 | |
| /* >  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
 | |
| /* >      for Solving the Generalized Sylvester Equation and Estimating the */
 | |
| /* >      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
 | |
| /* >      Department of Computing Science, Umea University, S-901 87 Umea, */
 | |
| /* >      Sweden, December 1993, Revised April 1994, Also as LAPACK working */
 | |
| /* >      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */
 | |
| /* >      1996. */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ztgsen_(integer *ijob, logical *wantq, logical *wantz, 
 | |
| 	logical *select, integer *n, doublecomplex *a, integer *lda, 
 | |
| 	doublecomplex *b, integer *ldb, doublecomplex *alpha, doublecomplex *
 | |
| 	beta, doublecomplex *q, integer *ldq, doublecomplex *z__, integer *
 | |
| 	ldz, integer *m, doublereal *pl, doublereal *pr, doublereal *dif, 
 | |
| 	doublecomplex *work, integer *lwork, integer *iwork, integer *liwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
 | |
| 	    z_offset, i__1, i__2, i__3;
 | |
|     doublecomplex z__1, z__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer kase, ierr;
 | |
|     doublereal dsum;
 | |
|     logical swap;
 | |
|     doublecomplex temp1, temp2;
 | |
|     integer i__, k, isave[3];
 | |
|     extern /* Subroutine */ void zscal_(integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     logical wantd;
 | |
|     integer lwmin;
 | |
|     logical wantp;
 | |
|     integer n1, n2;
 | |
|     extern /* Subroutine */ void zlacn2_(integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, doublereal *, integer *, integer *);
 | |
|     logical wantd1, wantd2;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal dscale;
 | |
|     integer ks;
 | |
|     doublereal rdscal, safmin;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer liwmin;
 | |
|     extern /* Subroutine */ void zlacpy_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *), 
 | |
| 	    ztgexc_(logical *, logical *, integer *, doublecomplex *, integer 
 | |
| 	    *, doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, integer *, integer *, integer *);
 | |
|     integer mn2;
 | |
|     extern /* Subroutine */ void zlassq_(integer *, doublecomplex *, integer *,
 | |
| 	     doublereal *, doublereal *);
 | |
|     logical lquery;
 | |
|     extern /* Subroutine */ void ztgsyl_(char *, integer *, integer *, integer 
 | |
| 	    *, doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublecomplex *, integer *, integer *,
 | |
| 	     integer *);
 | |
|     integer ijb;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --select;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --alpha;
 | |
|     --beta;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --dif;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     lquery = *lwork == -1 || *liwork == -1;
 | |
| 
 | |
|     if (*ijob < 0 || *ijob > 5) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldq < 1 || *wantq && *ldq < *n) {
 | |
| 	*info = -13;
 | |
|     } else if (*ldz < 1 || *wantz && *ldz < *n) {
 | |
| 	*info = -15;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZTGSEN", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     ierr = 0;
 | |
| 
 | |
|     wantp = *ijob == 1 || *ijob >= 4;
 | |
|     wantd1 = *ijob == 2 || *ijob == 4;
 | |
|     wantd2 = *ijob == 3 || *ijob == 5;
 | |
|     wantd = wantd1 || wantd2;
 | |
| 
 | |
| /*     Set M to the dimension of the specified pair of deflating */
 | |
| /*     subspaces. */
 | |
| 
 | |
|     *m = 0;
 | |
|     if (! lquery || *ijob != 0) {
 | |
| 	i__1 = *n;
 | |
| 	for (k = 1; k <= i__1; ++k) {
 | |
| 	    i__2 = k;
 | |
| 	    i__3 = k + k * a_dim1;
 | |
| 	    alpha[i__2].r = a[i__3].r, alpha[i__2].i = a[i__3].i;
 | |
| 	    i__2 = k;
 | |
| 	    i__3 = k + k * b_dim1;
 | |
| 	    beta[i__2].r = b[i__3].r, beta[i__2].i = b[i__3].i;
 | |
| 	    if (k < *n) {
 | |
| 		if (select[k]) {
 | |
| 		    ++(*m);
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (select[*n]) {
 | |
| 		    ++(*m);
 | |
| 		}
 | |
| 	    }
 | |
| /* L10: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*ijob == 1 || *ijob == 2 || *ijob == 4) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = (*m << 1) * (*n - *m);
 | |
| 	lwmin = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *n + 2;
 | |
| 	liwmin = f2cmax(i__1,i__2);
 | |
|     } else if (*ijob == 3 || *ijob == 5) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = (*m << 2) * (*n - *m);
 | |
| 	lwmin = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = f2cmax(i__1,i__2), i__2 = 
 | |
| 		*n + 2;
 | |
| 	liwmin = f2cmax(i__1,i__2);
 | |
|     } else {
 | |
| 	lwmin = 1;
 | |
| 	liwmin = 1;
 | |
|     }
 | |
| 
 | |
|     work[1].r = (doublereal) lwmin, work[1].i = 0.;
 | |
|     iwork[1] = liwmin;
 | |
| 
 | |
|     if (*lwork < lwmin && ! lquery) {
 | |
| 	*info = -21;
 | |
|     } else if (*liwork < liwmin && ! lquery) {
 | |
| 	*info = -23;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZTGSEN", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*m == *n || *m == 0) {
 | |
| 	if (wantp) {
 | |
| 	    *pl = 1.;
 | |
| 	    *pr = 1.;
 | |
| 	}
 | |
| 	if (wantd) {
 | |
| 	    dscale = 0.;
 | |
| 	    dsum = 1.;
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		zlassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum);
 | |
| 		zlassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum);
 | |
| /* L20: */
 | |
| 	    }
 | |
| 	    dif[1] = dscale * sqrt(dsum);
 | |
| 	    dif[2] = dif[1];
 | |
| 	}
 | |
| 	goto L70;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constant */
 | |
| 
 | |
|     safmin = dlamch_("S");
 | |
| 
 | |
| /*     Collect the selected blocks at the top-left corner of (A, B). */
 | |
| 
 | |
|     ks = 0;
 | |
|     i__1 = *n;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	swap = select[k];
 | |
| 	if (swap) {
 | |
| 	    ++ks;
 | |
| 
 | |
| /*           Swap the K-th block to position KS. Compute unitary Q */
 | |
| /*           and Z that will swap adjacent diagonal blocks in (A, B). */
 | |
| 
 | |
| 	    if (k != ks) {
 | |
| 		ztgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb,
 | |
| 			 &q[q_offset], ldq, &z__[z_offset], ldz, &k, &ks, &
 | |
| 			ierr);
 | |
| 	    }
 | |
| 
 | |
| 	    if (ierr > 0) {
 | |
| 
 | |
| /*              Swap is rejected: exit. */
 | |
| 
 | |
| 		*info = 1;
 | |
| 		if (wantp) {
 | |
| 		    *pl = 0.;
 | |
| 		    *pr = 0.;
 | |
| 		}
 | |
| 		if (wantd) {
 | |
| 		    dif[1] = 0.;
 | |
| 		    dif[2] = 0.;
 | |
| 		}
 | |
| 		goto L70;
 | |
| 	    }
 | |
| 	}
 | |
| /* L30: */
 | |
|     }
 | |
|     if (wantp) {
 | |
| 
 | |
| /*        Solve generalized Sylvester equation for R and L: */
 | |
| /*                   A11 * R - L * A22 = A12 */
 | |
| /*                   B11 * R - L * B22 = B12 */
 | |
| 
 | |
| 	n1 = *m;
 | |
| 	n2 = *n - *m;
 | |
| 	i__ = n1 + 1;
 | |
| 	zlacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1);
 | |
| 	zlacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 + 
 | |
| 		1], &n1);
 | |
| 	ijb = 0;
 | |
| 	i__1 = *lwork - (n1 << 1) * n2;
 | |
| 	ztgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1]
 | |
| 		, lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * 
 | |
| 		b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &
 | |
| 		work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr);
 | |
| 
 | |
| /*        Estimate the reciprocal of norms of "projections" onto */
 | |
| /*        left and right eigenspaces */
 | |
| 
 | |
| 	rdscal = 0.;
 | |
| 	dsum = 1.;
 | |
| 	i__1 = n1 * n2;
 | |
| 	zlassq_(&i__1, &work[1], &c__1, &rdscal, &dsum);
 | |
| 	*pl = rdscal * sqrt(dsum);
 | |
| 	if (*pl == 0.) {
 | |
| 	    *pl = 1.;
 | |
| 	} else {
 | |
| 	    *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));
 | |
| 	}
 | |
| 	rdscal = 0.;
 | |
| 	dsum = 1.;
 | |
| 	i__1 = n1 * n2;
 | |
| 	zlassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);
 | |
| 	*pr = rdscal * sqrt(dsum);
 | |
| 	if (*pr == 0.) {
 | |
| 	    *pr = 1.;
 | |
| 	} else {
 | |
| 	    *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));
 | |
| 	}
 | |
|     }
 | |
|     if (wantd) {
 | |
| 
 | |
| /*        Compute estimates Difu and Difl. */
 | |
| 
 | |
| 	if (wantd1) {
 | |
| 	    n1 = *m;
 | |
| 	    n2 = *n - *m;
 | |
| 	    i__ = n1 + 1;
 | |
| 	    ijb = 3;
 | |
| 
 | |
| /*           Frobenius norm-based Difu estimate. */
 | |
| 
 | |
| 	    i__1 = *lwork - (n1 << 1) * n2;
 | |
| 	    ztgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * 
 | |
| 		    a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + 
 | |
| 		    i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &
 | |
| 		    dif[1], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &
 | |
| 		    ierr);
 | |
| 
 | |
| /*           Frobenius norm-based Difl estimate. */
 | |
| 
 | |
| 	    i__1 = *lwork - (n1 << 1) * n2;
 | |
| 	    ztgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[
 | |
| 		    a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], 
 | |
| 		    ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, 
 | |
| 		    &dif[2], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &
 | |
| 		    ierr);
 | |
| 	} else {
 | |
| 
 | |
| /*           Compute 1-norm-based estimates of Difu and Difl using */
 | |
| /*           reversed communication with ZLACN2. In each step a */
 | |
| /*           generalized Sylvester equation or a transposed variant */
 | |
| /*           is solved. */
 | |
| 
 | |
| 	    kase = 0;
 | |
| 	    n1 = *m;
 | |
| 	    n2 = *n - *m;
 | |
| 	    i__ = n1 + 1;
 | |
| 	    ijb = 0;
 | |
| 	    mn2 = (n1 << 1) * n2;
 | |
| 
 | |
| /*           1-norm-based estimate of Difu. */
 | |
| 
 | |
| L40:
 | |
| 	    zlacn2_(&mn2, &work[mn2 + 1], &work[1], &dif[1], &kase, isave);
 | |
| 	    if (kase != 0) {
 | |
| 		if (kase == 1) {
 | |
| 
 | |
| /*                 Solve generalized Sylvester equation */
 | |
| 
 | |
| 		    i__1 = *lwork - (n1 << 1) * n2;
 | |
| 		    ztgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + 
 | |
| 			    i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], 
 | |
| 			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 
 | |
| 			    1], &n1, &dscale, &dif[1], &work[(n1 * n2 << 1) + 
 | |
| 			    1], &i__1, &iwork[1], &ierr);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Solve the transposed variant. */
 | |
| 
 | |
| 		    i__1 = *lwork - (n1 << 1) * n2;
 | |
| 		    ztgsyl_("C", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + 
 | |
| 			    i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], 
 | |
| 			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 
 | |
| 			    1], &n1, &dscale, &dif[1], &work[(n1 * n2 << 1) + 
 | |
| 			    1], &i__1, &iwork[1], &ierr);
 | |
| 		}
 | |
| 		goto L40;
 | |
| 	    }
 | |
| 	    dif[1] = dscale / dif[1];
 | |
| 
 | |
| /*           1-norm-based estimate of Difl. */
 | |
| 
 | |
| L50:
 | |
| 	    zlacn2_(&mn2, &work[mn2 + 1], &work[1], &dif[2], &kase, isave);
 | |
| 	    if (kase != 0) {
 | |
| 		if (kase == 1) {
 | |
| 
 | |
| /*                 Solve generalized Sylvester equation */
 | |
| 
 | |
| 		    i__1 = *lwork - (n1 << 1) * n2;
 | |
| 		    ztgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, 
 | |
| 			    &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * 
 | |
| 			    b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 
 | |
| 			    1], &n2, &dscale, &dif[2], &work[(n1 * n2 << 1) + 
 | |
| 			    1], &i__1, &iwork[1], &ierr);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Solve the transposed variant. */
 | |
| 
 | |
| 		    i__1 = *lwork - (n1 << 1) * n2;
 | |
| 		    ztgsyl_("C", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, 
 | |
| 			    &a[a_offset], lda, &work[1], &n2, &b[b_offset], 
 | |
| 			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 
 | |
| 			    1], &n2, &dscale, &dif[2], &work[(n1 * n2 << 1) + 
 | |
| 			    1], &i__1, &iwork[1], &ierr);
 | |
| 		}
 | |
| 		goto L50;
 | |
| 	    }
 | |
| 	    dif[2] = dscale / dif[2];
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If B(K,K) is complex, make it real and positive (normalization */
 | |
| /*     of the generalized Schur form) and Store the generalized */
 | |
| /*     eigenvalues of reordered pair (A, B) */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	dscale = z_abs(&b[k + k * b_dim1]);
 | |
| 	if (dscale > safmin) {
 | |
| 	    i__2 = k + k * b_dim1;
 | |
| 	    z__2.r = b[i__2].r / dscale, z__2.i = b[i__2].i / dscale;
 | |
| 	    d_cnjg(&z__1, &z__2);
 | |
| 	    temp1.r = z__1.r, temp1.i = z__1.i;
 | |
| 	    i__2 = k + k * b_dim1;
 | |
| 	    z__1.r = b[i__2].r / dscale, z__1.i = b[i__2].i / dscale;
 | |
| 	    temp2.r = z__1.r, temp2.i = z__1.i;
 | |
| 	    i__2 = k + k * b_dim1;
 | |
| 	    b[i__2].r = dscale, b[i__2].i = 0.;
 | |
| 	    i__2 = *n - k;
 | |
| 	    zscal_(&i__2, &temp1, &b[k + (k + 1) * b_dim1], ldb);
 | |
| 	    i__2 = *n - k + 1;
 | |
| 	    zscal_(&i__2, &temp1, &a[k + k * a_dim1], lda);
 | |
| 	    if (*wantq) {
 | |
| 		zscal_(n, &temp2, &q[k * q_dim1 + 1], &c__1);
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__2 = k + k * b_dim1;
 | |
| 	    b[i__2].r = 0., b[i__2].i = 0.;
 | |
| 	}
 | |
| 
 | |
| 	i__2 = k;
 | |
| 	i__3 = k + k * a_dim1;
 | |
| 	alpha[i__2].r = a[i__3].r, alpha[i__2].i = a[i__3].i;
 | |
| 	i__2 = k;
 | |
| 	i__3 = k + k * b_dim1;
 | |
| 	beta[i__2].r = b[i__3].r, beta[i__2].i = b[i__3].i;
 | |
| 
 | |
| /* L60: */
 | |
|     }
 | |
| 
 | |
| L70:
 | |
| 
 | |
|     work[1].r = (doublereal) lwmin, work[1].i = 0.;
 | |
|     iwork[1] = liwmin;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZTGSEN */
 | |
| 
 | |
| } /* ztgsen_ */
 | |
| 
 |