846 lines
23 KiB
C
846 lines
23 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static real c_b29 = 1.f;
|
|
static real c_b30 = 0.f;
|
|
static real c_b33 = -1.f;
|
|
|
|
/* > \brief \b SLATM5 */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE SLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD, */
|
|
/* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA, */
|
|
/* QBLCKB ) */
|
|
|
|
/* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N, */
|
|
/* $ PRTYPE, QBLCKA, QBLCKB */
|
|
/* REAL ALPHA */
|
|
/* REAL A( LDA, * ), B( LDB, * ), C( LDC, * ), */
|
|
/* $ D( LDD, * ), E( LDE, * ), F( LDF, * ), */
|
|
/* $ L( LDL, * ), R( LDR, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SLATM5 generates matrices involved in the Generalized Sylvester */
|
|
/* > equation: */
|
|
/* > */
|
|
/* > A * R - L * B = C */
|
|
/* > D * R - L * E = F */
|
|
/* > */
|
|
/* > They also satisfy (the diagonalization condition) */
|
|
/* > */
|
|
/* > [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] ) */
|
|
/* > [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] ) */
|
|
/* > */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] PRTYPE */
|
|
/* > \verbatim */
|
|
/* > PRTYPE is INTEGER */
|
|
/* > "Points" to a certain type of the matrices to generate */
|
|
/* > (see further details). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > Specifies the order of A and D and the number of rows in */
|
|
/* > C, F, R and L. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > Specifies the order of B and E and the number of columns in */
|
|
/* > C, F, R and L. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] A */
|
|
/* > \verbatim */
|
|
/* > A is REAL array, dimension (LDA, M). */
|
|
/* > On exit A M-by-M is initialized according to PRTYPE. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] B */
|
|
/* > \verbatim */
|
|
/* > B is REAL array, dimension (LDB, N). */
|
|
/* > On exit B N-by-N is initialized according to PRTYPE. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of B. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] C */
|
|
/* > \verbatim */
|
|
/* > C is REAL array, dimension (LDC, N). */
|
|
/* > On exit C M-by-N is initialized according to PRTYPE. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDC */
|
|
/* > \verbatim */
|
|
/* > LDC is INTEGER */
|
|
/* > The leading dimension of C. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] D */
|
|
/* > \verbatim */
|
|
/* > D is REAL array, dimension (LDD, M). */
|
|
/* > On exit D M-by-M is initialized according to PRTYPE. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDD */
|
|
/* > \verbatim */
|
|
/* > LDD is INTEGER */
|
|
/* > The leading dimension of D. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] E */
|
|
/* > \verbatim */
|
|
/* > E is REAL array, dimension (LDE, N). */
|
|
/* > On exit E N-by-N is initialized according to PRTYPE. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDE */
|
|
/* > \verbatim */
|
|
/* > LDE is INTEGER */
|
|
/* > The leading dimension of E. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] F */
|
|
/* > \verbatim */
|
|
/* > F is REAL array, dimension (LDF, N). */
|
|
/* > On exit F M-by-N is initialized according to PRTYPE. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDF */
|
|
/* > \verbatim */
|
|
/* > LDF is INTEGER */
|
|
/* > The leading dimension of F. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] R */
|
|
/* > \verbatim */
|
|
/* > R is REAL array, dimension (LDR, N). */
|
|
/* > On exit R M-by-N is initialized according to PRTYPE. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDR */
|
|
/* > \verbatim */
|
|
/* > LDR is INTEGER */
|
|
/* > The leading dimension of R. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] L */
|
|
/* > \verbatim */
|
|
/* > L is REAL array, dimension (LDL, N). */
|
|
/* > On exit L M-by-N is initialized according to PRTYPE. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDL */
|
|
/* > \verbatim */
|
|
/* > LDL is INTEGER */
|
|
/* > The leading dimension of L. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ALPHA */
|
|
/* > \verbatim */
|
|
/* > ALPHA is REAL */
|
|
/* > Parameter used in generating PRTYPE = 1 and 5 matrices. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] QBLCKA */
|
|
/* > \verbatim */
|
|
/* > QBLCKA is INTEGER */
|
|
/* > When PRTYPE = 3, specifies the distance between 2-by-2 */
|
|
/* > blocks on the diagonal in A. Otherwise, QBLCKA is not */
|
|
/* > referenced. QBLCKA > 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] QBLCKB */
|
|
/* > \verbatim */
|
|
/* > QBLCKB is INTEGER */
|
|
/* > When PRTYPE = 3, specifies the distance between 2-by-2 */
|
|
/* > blocks on the diagonal in B. Otherwise, QBLCKB is not */
|
|
/* > referenced. QBLCKB > 1. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2016 */
|
|
|
|
/* > \ingroup real_matgen */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices */
|
|
/* > */
|
|
/* > A : if (i == j) then A(i, j) = 1.0 */
|
|
/* > if (j == i + 1) then A(i, j) = -1.0 */
|
|
/* > else A(i, j) = 0.0, i, j = 1...M */
|
|
/* > */
|
|
/* > B : if (i == j) then B(i, j) = 1.0 - ALPHA */
|
|
/* > if (j == i + 1) then B(i, j) = 1.0 */
|
|
/* > else B(i, j) = 0.0, i, j = 1...N */
|
|
/* > */
|
|
/* > D : if (i == j) then D(i, j) = 1.0 */
|
|
/* > else D(i, j) = 0.0, i, j = 1...M */
|
|
/* > */
|
|
/* > E : if (i == j) then E(i, j) = 1.0 */
|
|
/* > else E(i, j) = 0.0, i, j = 1...N */
|
|
/* > */
|
|
/* > L = R are chosen from [-10...10], */
|
|
/* > which specifies the right hand sides (C, F). */
|
|
/* > */
|
|
/* > PRTYPE = 2 or 3: Triangular and/or quasi- triangular. */
|
|
/* > */
|
|
/* > A : if (i <= j) then A(i, j) = [-1...1] */
|
|
/* > else A(i, j) = 0.0, i, j = 1...M */
|
|
/* > */
|
|
/* > if (PRTYPE = 3) then */
|
|
/* > A(k + 1, k + 1) = A(k, k) */
|
|
/* > A(k + 1, k) = [-1...1] */
|
|
/* > sign(A(k, k + 1) = -(sin(A(k + 1, k)) */
|
|
/* > k = 1, M - 1, QBLCKA */
|
|
/* > */
|
|
/* > B : if (i <= j) then B(i, j) = [-1...1] */
|
|
/* > else B(i, j) = 0.0, i, j = 1...N */
|
|
/* > */
|
|
/* > if (PRTYPE = 3) then */
|
|
/* > B(k + 1, k + 1) = B(k, k) */
|
|
/* > B(k + 1, k) = [-1...1] */
|
|
/* > sign(B(k, k + 1) = -(sign(B(k + 1, k)) */
|
|
/* > k = 1, N - 1, QBLCKB */
|
|
/* > */
|
|
/* > D : if (i <= j) then D(i, j) = [-1...1]. */
|
|
/* > else D(i, j) = 0.0, i, j = 1...M */
|
|
/* > */
|
|
/* > */
|
|
/* > E : if (i <= j) then D(i, j) = [-1...1] */
|
|
/* > else E(i, j) = 0.0, i, j = 1...N */
|
|
/* > */
|
|
/* > L, R are chosen from [-10...10], */
|
|
/* > which specifies the right hand sides (C, F). */
|
|
/* > */
|
|
/* > PRTYPE = 4 Full */
|
|
/* > A(i, j) = [-10...10] */
|
|
/* > D(i, j) = [-1...1] i,j = 1...M */
|
|
/* > B(i, j) = [-10...10] */
|
|
/* > E(i, j) = [-1...1] i,j = 1...N */
|
|
/* > R(i, j) = [-10...10] */
|
|
/* > L(i, j) = [-1...1] i = 1..M ,j = 1...N */
|
|
/* > */
|
|
/* > L, R specifies the right hand sides (C, F). */
|
|
/* > */
|
|
/* > PRTYPE = 5 special case common and/or close eigs. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void slatm5_(integer *prtype, integer *m, integer *n, real *a,
|
|
integer *lda, real *b, integer *ldb, real *c__, integer *ldc, real *
|
|
d__, integer *ldd, real *e, integer *lde, real *f, integer *ldf, real
|
|
*r__, integer *ldr, real *l, integer *ldl, real *alpha, integer *
|
|
qblcka, integer *qblckb)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
|
|
d_offset, e_dim1, e_offset, f_dim1, f_offset, l_dim1, l_offset,
|
|
r_dim1, r_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, j, k;
|
|
extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
|
|
integer *, real *, real *, integer *, real *, integer *, real *,
|
|
real *, integer *);
|
|
real imeps, reeps;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1 * 1;
|
|
c__ -= c_offset;
|
|
d_dim1 = *ldd;
|
|
d_offset = 1 + d_dim1 * 1;
|
|
d__ -= d_offset;
|
|
e_dim1 = *lde;
|
|
e_offset = 1 + e_dim1 * 1;
|
|
e -= e_offset;
|
|
f_dim1 = *ldf;
|
|
f_offset = 1 + f_dim1 * 1;
|
|
f -= f_offset;
|
|
r_dim1 = *ldr;
|
|
r_offset = 1 + r_dim1 * 1;
|
|
r__ -= r_offset;
|
|
l_dim1 = *ldl;
|
|
l_offset = 1 + l_dim1 * 1;
|
|
l -= l_offset;
|
|
|
|
/* Function Body */
|
|
if (*prtype == 1) {
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *m;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
if (i__ == j) {
|
|
a[i__ + j * a_dim1] = 1.f;
|
|
d__[i__ + j * d_dim1] = 1.f;
|
|
} else if (i__ == j - 1) {
|
|
a[i__ + j * a_dim1] = -1.f;
|
|
d__[i__ + j * d_dim1] = 0.f;
|
|
} else {
|
|
a[i__ + j * a_dim1] = 0.f;
|
|
d__[i__ + j * d_dim1] = 0.f;
|
|
}
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *n;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
if (i__ == j) {
|
|
b[i__ + j * b_dim1] = 1.f - *alpha;
|
|
e[i__ + j * e_dim1] = 1.f;
|
|
} else if (i__ == j - 1) {
|
|
b[i__ + j * b_dim1] = 1.f;
|
|
e[i__ + j * e_dim1] = 0.f;
|
|
} else {
|
|
b[i__ + j * b_dim1] = 0.f;
|
|
e[i__ + j * e_dim1] = 0.f;
|
|
}
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *n;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
r__[i__ + j * r_dim1] = (.5f - sin((real) (i__ / j))) * 20.f;
|
|
l[i__ + j * l_dim1] = r__[i__ + j * r_dim1];
|
|
/* L50: */
|
|
}
|
|
/* L60: */
|
|
}
|
|
|
|
} else if (*prtype == 2 || *prtype == 3) {
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *m;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
if (i__ <= j) {
|
|
a[i__ + j * a_dim1] = (.5f - sin((real) i__)) * 2.f;
|
|
d__[i__ + j * d_dim1] = (.5f - sin((real) (i__ * j))) *
|
|
2.f;
|
|
} else {
|
|
a[i__ + j * a_dim1] = 0.f;
|
|
d__[i__ + j * d_dim1] = 0.f;
|
|
}
|
|
/* L70: */
|
|
}
|
|
/* L80: */
|
|
}
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *n;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
if (i__ <= j) {
|
|
b[i__ + j * b_dim1] = (.5f - sin((real) (i__ + j))) * 2.f;
|
|
e[i__ + j * e_dim1] = (.5f - sin((real) j)) * 2.f;
|
|
} else {
|
|
b[i__ + j * b_dim1] = 0.f;
|
|
e[i__ + j * e_dim1] = 0.f;
|
|
}
|
|
/* L90: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *n;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
r__[i__ + j * r_dim1] = (.5f - sin((real) (i__ * j))) * 20.f;
|
|
l[i__ + j * l_dim1] = (.5f - sin((real) (i__ + j))) * 20.f;
|
|
/* L110: */
|
|
}
|
|
/* L120: */
|
|
}
|
|
|
|
if (*prtype == 3) {
|
|
if (*qblcka <= 1) {
|
|
*qblcka = 2;
|
|
}
|
|
i__1 = *m - 1;
|
|
i__2 = *qblcka;
|
|
for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
|
|
a[k + 1 + (k + 1) * a_dim1] = a[k + k * a_dim1];
|
|
a[k + 1 + k * a_dim1] = -sin(a[k + (k + 1) * a_dim1]);
|
|
/* L130: */
|
|
}
|
|
|
|
if (*qblckb <= 1) {
|
|
*qblckb = 2;
|
|
}
|
|
i__2 = *n - 1;
|
|
i__1 = *qblckb;
|
|
for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
|
|
b[k + 1 + (k + 1) * b_dim1] = b[k + k * b_dim1];
|
|
b[k + 1 + k * b_dim1] = -sin(b[k + (k + 1) * b_dim1]);
|
|
/* L140: */
|
|
}
|
|
}
|
|
|
|
} else if (*prtype == 4) {
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *m;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
a[i__ + j * a_dim1] = (.5f - sin((real) (i__ * j))) * 20.f;
|
|
d__[i__ + j * d_dim1] = (.5f - sin((real) (i__ + j))) * 2.f;
|
|
/* L150: */
|
|
}
|
|
/* L160: */
|
|
}
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *n;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
b[i__ + j * b_dim1] = (.5f - sin((real) (i__ + j))) * 20.f;
|
|
e[i__ + j * e_dim1] = (.5f - sin((real) (i__ * j))) * 2.f;
|
|
/* L170: */
|
|
}
|
|
/* L180: */
|
|
}
|
|
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *n;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
r__[i__ + j * r_dim1] = (.5f - sin((real) (j / i__))) * 20.f;
|
|
l[i__ + j * l_dim1] = (.5f - sin((real) (i__ * j))) * 2.f;
|
|
/* L190: */
|
|
}
|
|
/* L200: */
|
|
}
|
|
|
|
} else if (*prtype >= 5) {
|
|
reeps = 20.f / *alpha;
|
|
imeps = -1.5f / *alpha;
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *n;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
r__[i__ + j * r_dim1] = (.5f - sin((real) (i__ * j))) * *
|
|
alpha / 20.f;
|
|
l[i__ + j * l_dim1] = (.5f - sin((real) (i__ + j))) * *alpha /
|
|
20.f;
|
|
/* L210: */
|
|
}
|
|
/* L220: */
|
|
}
|
|
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d__[i__ + i__ * d_dim1] = 1.f;
|
|
/* L230: */
|
|
}
|
|
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
if (i__ <= 4) {
|
|
a[i__ + i__ * a_dim1] = 1.f;
|
|
if (i__ > 2) {
|
|
a[i__ + i__ * a_dim1] = reeps + 1.f;
|
|
}
|
|
if (i__ % 2 != 0 && i__ < *m) {
|
|
a[i__ + (i__ + 1) * a_dim1] = imeps;
|
|
} else if (i__ > 1) {
|
|
a[i__ + (i__ - 1) * a_dim1] = -imeps;
|
|
}
|
|
} else if (i__ <= 8) {
|
|
if (i__ <= 6) {
|
|
a[i__ + i__ * a_dim1] = reeps;
|
|
} else {
|
|
a[i__ + i__ * a_dim1] = -reeps;
|
|
}
|
|
if (i__ % 2 != 0 && i__ < *m) {
|
|
a[i__ + (i__ + 1) * a_dim1] = 1.f;
|
|
} else if (i__ > 1) {
|
|
a[i__ + (i__ - 1) * a_dim1] = -1.f;
|
|
}
|
|
} else {
|
|
a[i__ + i__ * a_dim1] = 1.f;
|
|
if (i__ % 2 != 0 && i__ < *m) {
|
|
a[i__ + (i__ + 1) * a_dim1] = imeps * 2;
|
|
} else if (i__ > 1) {
|
|
a[i__ + (i__ - 1) * a_dim1] = -imeps * 2;
|
|
}
|
|
}
|
|
/* L240: */
|
|
}
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
e[i__ + i__ * e_dim1] = 1.f;
|
|
if (i__ <= 4) {
|
|
b[i__ + i__ * b_dim1] = -1.f;
|
|
if (i__ > 2) {
|
|
b[i__ + i__ * b_dim1] = 1.f - reeps;
|
|
}
|
|
if (i__ % 2 != 0 && i__ < *n) {
|
|
b[i__ + (i__ + 1) * b_dim1] = imeps;
|
|
} else if (i__ > 1) {
|
|
b[i__ + (i__ - 1) * b_dim1] = -imeps;
|
|
}
|
|
} else if (i__ <= 8) {
|
|
if (i__ <= 6) {
|
|
b[i__ + i__ * b_dim1] = reeps;
|
|
} else {
|
|
b[i__ + i__ * b_dim1] = -reeps;
|
|
}
|
|
if (i__ % 2 != 0 && i__ < *n) {
|
|
b[i__ + (i__ + 1) * b_dim1] = imeps + 1.f;
|
|
} else if (i__ > 1) {
|
|
b[i__ + (i__ - 1) * b_dim1] = -1.f - imeps;
|
|
}
|
|
} else {
|
|
b[i__ + i__ * b_dim1] = 1.f - reeps;
|
|
if (i__ % 2 != 0 && i__ < *n) {
|
|
b[i__ + (i__ + 1) * b_dim1] = imeps * 2;
|
|
} else if (i__ > 1) {
|
|
b[i__ + (i__ - 1) * b_dim1] = -imeps * 2;
|
|
}
|
|
}
|
|
/* L250: */
|
|
}
|
|
}
|
|
|
|
/* Compute rhs (C, F) */
|
|
|
|
sgemm_("N", "N", m, n, m, &c_b29, &a[a_offset], lda, &r__[r_offset], ldr,
|
|
&c_b30, &c__[c_offset], ldc);
|
|
sgemm_("N", "N", m, n, n, &c_b33, &l[l_offset], ldl, &b[b_offset], ldb, &
|
|
c_b29, &c__[c_offset], ldc);
|
|
sgemm_("N", "N", m, n, m, &c_b29, &d__[d_offset], ldd, &r__[r_offset],
|
|
ldr, &c_b30, &f[f_offset], ldf);
|
|
sgemm_("N", "N", m, n, n, &c_b33, &l[l_offset], ldl, &e[e_offset], lde, &
|
|
c_b29, &f[f_offset], ldf);
|
|
|
|
/* End of SLATM5 */
|
|
|
|
return;
|
|
} /* slatm5_ */
|
|
|