OpenBLAS/lapack-netlib/TESTING/MATGEN/clakf2.c

495 lines
12 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
/* Table of constant values */
static complex c_b1 = {0.f,0.f};
/* > \brief \b CLAKF2 */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE CLAKF2( M, N, A, LDA, B, D, E, Z, LDZ ) */
/* INTEGER LDA, LDZ, M, N */
/* COMPLEX A( LDA, * ), B( LDA, * ), D( LDA, * ), */
/* $ E( LDA, * ), Z( LDZ, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > Form the 2*M*N by 2*M*N matrix */
/* > */
/* > Z = [ kron(In, A) -kron(B', Im) ] */
/* > [ kron(In, D) -kron(E', Im) ], */
/* > */
/* > where In is the identity matrix of size n and X' is the transpose */
/* > of X. kron(X, Y) is the Kronecker product between the matrices X */
/* > and Y. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > Size of matrix, must be >= 1. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > Size of matrix, must be >= 1. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX, dimension ( LDA, M ) */
/* > The matrix A in the output matrix Z. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of A, B, D, and E. ( LDA >= M+N ) */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is COMPLEX, dimension ( LDA, N ) */
/* > \endverbatim */
/* > */
/* > \param[in] D */
/* > \verbatim */
/* > D is COMPLEX, dimension ( LDA, M ) */
/* > \endverbatim */
/* > */
/* > \param[in] E */
/* > \verbatim */
/* > E is COMPLEX, dimension ( LDA, N ) */
/* > */
/* > The matrices used in forming the output matrix Z. */
/* > \endverbatim */
/* > */
/* > \param[out] Z */
/* > \verbatim */
/* > Z is COMPLEX, dimension ( LDZ, 2*M*N ) */
/* > The resultant Kronecker M*N*2 by M*N*2 matrix (see above.) */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of Z. ( LDZ >= 2*M*N ) */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex_matgen */
/* ===================================================================== */
/* Subroutine */ void clakf2_(integer *m, integer *n, complex *a, integer *lda,
complex *b, complex *d__, complex *e, complex *z__, integer *ldz)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, d_dim1, d_offset, e_dim1,
e_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
complex q__1;
/* Local variables */
integer i__, j, l, ik, jk, mn;
extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
*, complex *, complex *, integer *);
integer mn2;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ==================================================================== */
/* Initialize Z */
/* Parameter adjustments */
e_dim1 = *lda;
e_offset = 1 + e_dim1 * 1;
e -= e_offset;
d_dim1 = *lda;
d_offset = 1 + d_dim1 * 1;
d__ -= d_offset;
b_dim1 = *lda;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
/* Function Body */
mn = *m * *n;
mn2 = mn << 1;
claset_("Full", &mn2, &mn2, &c_b1, &c_b1, &z__[z_offset], ldz);
ik = 1;
i__1 = *n;
for (l = 1; l <= i__1; ++l) {
/* form kron(In, A) */
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = *m;
for (j = 1; j <= i__3; ++j) {
i__4 = ik + i__ - 1 + (ik + j - 1) * z_dim1;
i__5 = i__ + j * a_dim1;
z__[i__4].r = a[i__5].r, z__[i__4].i = a[i__5].i;
/* L10: */
}
/* L20: */
}
/* form kron(In, D) */
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = *m;
for (j = 1; j <= i__3; ++j) {
i__4 = ik + mn + i__ - 1 + (ik + j - 1) * z_dim1;
i__5 = i__ + j * d_dim1;
z__[i__4].r = d__[i__5].r, z__[i__4].i = d__[i__5].i;
/* L30: */
}
/* L40: */
}
ik += *m;
/* L50: */
}
ik = 1;
i__1 = *n;
for (l = 1; l <= i__1; ++l) {
jk = mn + 1;
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
/* form -kron(B', Im) */
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = ik + i__ - 1 + (jk + i__ - 1) * z_dim1;
i__5 = j + l * b_dim1;
q__1.r = -b[i__5].r, q__1.i = -b[i__5].i;
z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
/* L60: */
}
/* form -kron(E', Im) */
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = ik + mn + i__ - 1 + (jk + i__ - 1) * z_dim1;
i__5 = j + l * e_dim1;
q__1.r = -e[i__5].r, q__1.i = -e[i__5].i;
z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
/* L70: */
}
jk += *m;
/* L80: */
}
ik += *m;
/* L90: */
}
return;
/* End of CLAKF2 */
} /* clakf2_ */