783 lines
22 KiB
C
783 lines
22 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static complex c_b1 = {0.f,0.f};
|
|
static complex c_b2 = {1.f,0.f};
|
|
static integer c__3 = 3;
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b CLAGGE */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO ) */
|
|
|
|
/* INTEGER INFO, KL, KU, LDA, M, N */
|
|
/* INTEGER ISEED( 4 ) */
|
|
/* REAL D( * ) */
|
|
/* COMPLEX A( LDA, * ), WORK( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CLAGGE generates a complex general m by n matrix A, by pre- and post- */
|
|
/* > multiplying a real diagonal matrix D with random unitary matrices: */
|
|
/* > A = U*D*V. The lower and upper bandwidths may then be reduced to */
|
|
/* > kl and ku by additional unitary transformations. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The number of rows of the matrix A. M >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KL */
|
|
/* > \verbatim */
|
|
/* > KL is INTEGER */
|
|
/* > The number of nonzero subdiagonals within the band of A. */
|
|
/* > 0 <= KL <= M-1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KU */
|
|
/* > \verbatim */
|
|
/* > KU is INTEGER */
|
|
/* > The number of nonzero superdiagonals within the band of A. */
|
|
/* > 0 <= KU <= N-1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] D */
|
|
/* > \verbatim */
|
|
/* > D is REAL array, dimension (f2cmin(M,N)) */
|
|
/* > The diagonal elements of the diagonal matrix D. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX array, dimension (LDA,N) */
|
|
/* > The generated m by n matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= M. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] ISEED */
|
|
/* > \verbatim */
|
|
/* > ISEED is INTEGER array, dimension (4) */
|
|
/* > On entry, the seed of the random number generator; the array */
|
|
/* > elements must be between 0 and 4095, and ISEED(4) must be */
|
|
/* > odd. */
|
|
/* > On exit, the seed is updated. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX array, dimension (M+N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup complex_matgen */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void clagge_(integer *m, integer *n, integer *kl, integer *ku,
|
|
real *d__, complex *a, integer *lda, integer *iseed, complex *work,
|
|
integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
real r__1;
|
|
complex q__1;
|
|
|
|
/* Local variables */
|
|
integer i__, j;
|
|
extern /* Subroutine */ void cgerc_(integer *, integer *, complex *,
|
|
complex *, integer *, complex *, integer *, complex *, integer *),
|
|
cscal_(integer *, complex *, complex *, integer *), cgemv_(char *
|
|
, integer *, integer *, complex *, complex *, integer *, complex *
|
|
, integer *, complex *, complex *, integer *);
|
|
extern real scnrm2_(integer *, complex *, integer *);
|
|
complex wa, wb;
|
|
extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
|
|
real wn;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
extern void clarnv_(
|
|
integer *, integer *, integer *, complex *);
|
|
complex tau;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--iseed;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*kl < 0 || *kl > *m - 1) {
|
|
*info = -3;
|
|
} else if (*ku < 0 || *ku > *n - 1) {
|
|
*info = -4;
|
|
} else if (*lda < f2cmax(1,*m)) {
|
|
*info = -7;
|
|
}
|
|
if (*info < 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("CLAGGE", &i__1, 6);
|
|
return;
|
|
}
|
|
|
|
/* initialize A to diagonal matrix */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
a[i__3].r = 0.f, a[i__3].i = 0.f;
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
i__1 = f2cmin(*m,*n);
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = i__ + i__ * a_dim1;
|
|
i__3 = i__;
|
|
a[i__2].r = d__[i__3], a[i__2].i = 0.f;
|
|
/* L30: */
|
|
}
|
|
|
|
/* Quick exit if the user wants a diagonal matrix */
|
|
|
|
if (*kl == 0 && *ku == 0) {
|
|
return;
|
|
}
|
|
|
|
/* pre- and post-multiply A by random unitary matrices */
|
|
|
|
for (i__ = f2cmin(*m,*n); i__ >= 1; --i__) {
|
|
if (i__ < *m) {
|
|
|
|
/* generate random reflection */
|
|
|
|
i__1 = *m - i__ + 1;
|
|
clarnv_(&c__3, &iseed[1], &i__1, &work[1]);
|
|
i__1 = *m - i__ + 1;
|
|
wn = scnrm2_(&i__1, &work[1], &c__1);
|
|
r__1 = wn / c_abs(&work[1]);
|
|
q__1.r = r__1 * work[1].r, q__1.i = r__1 * work[1].i;
|
|
wa.r = q__1.r, wa.i = q__1.i;
|
|
if (wn == 0.f) {
|
|
tau.r = 0.f, tau.i = 0.f;
|
|
} else {
|
|
q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;
|
|
wb.r = q__1.r, wb.i = q__1.i;
|
|
i__1 = *m - i__;
|
|
c_div(&q__1, &c_b2, &wb);
|
|
cscal_(&i__1, &q__1, &work[2], &c__1);
|
|
work[1].r = 1.f, work[1].i = 0.f;
|
|
c_div(&q__1, &wb, &wa);
|
|
r__1 = q__1.r;
|
|
tau.r = r__1, tau.i = 0.f;
|
|
}
|
|
|
|
/* multiply A(i:m,i:n) by random reflection from the left */
|
|
|
|
i__1 = *m - i__ + 1;
|
|
i__2 = *n - i__ + 1;
|
|
cgemv_("Conjugate transpose", &i__1, &i__2, &c_b2, &a[i__ + i__ *
|
|
a_dim1], lda, &work[1], &c__1, &c_b1, &work[*m + 1], &
|
|
c__1);
|
|
i__1 = *m - i__ + 1;
|
|
i__2 = *n - i__ + 1;
|
|
q__1.r = -tau.r, q__1.i = -tau.i;
|
|
cgerc_(&i__1, &i__2, &q__1, &work[1], &c__1, &work[*m + 1], &c__1,
|
|
&a[i__ + i__ * a_dim1], lda);
|
|
}
|
|
if (i__ < *n) {
|
|
|
|
/* generate random reflection */
|
|
|
|
i__1 = *n - i__ + 1;
|
|
clarnv_(&c__3, &iseed[1], &i__1, &work[1]);
|
|
i__1 = *n - i__ + 1;
|
|
wn = scnrm2_(&i__1, &work[1], &c__1);
|
|
r__1 = wn / c_abs(&work[1]);
|
|
q__1.r = r__1 * work[1].r, q__1.i = r__1 * work[1].i;
|
|
wa.r = q__1.r, wa.i = q__1.i;
|
|
if (wn == 0.f) {
|
|
tau.r = 0.f, tau.i = 0.f;
|
|
} else {
|
|
q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;
|
|
wb.r = q__1.r, wb.i = q__1.i;
|
|
i__1 = *n - i__;
|
|
c_div(&q__1, &c_b2, &wb);
|
|
cscal_(&i__1, &q__1, &work[2], &c__1);
|
|
work[1].r = 1.f, work[1].i = 0.f;
|
|
c_div(&q__1, &wb, &wa);
|
|
r__1 = q__1.r;
|
|
tau.r = r__1, tau.i = 0.f;
|
|
}
|
|
|
|
/* multiply A(i:m,i:n) by random reflection from the right */
|
|
|
|
i__1 = *m - i__ + 1;
|
|
i__2 = *n - i__ + 1;
|
|
cgemv_("No transpose", &i__1, &i__2, &c_b2, &a[i__ + i__ * a_dim1]
|
|
, lda, &work[1], &c__1, &c_b1, &work[*n + 1], &c__1);
|
|
i__1 = *m - i__ + 1;
|
|
i__2 = *n - i__ + 1;
|
|
q__1.r = -tau.r, q__1.i = -tau.i;
|
|
cgerc_(&i__1, &i__2, &q__1, &work[*n + 1], &c__1, &work[1], &c__1,
|
|
&a[i__ + i__ * a_dim1], lda);
|
|
}
|
|
/* L40: */
|
|
}
|
|
|
|
/* Reduce number of subdiagonals to KL and number of superdiagonals */
|
|
/* to KU */
|
|
|
|
/* Computing MAX */
|
|
i__2 = *m - 1 - *kl, i__3 = *n - 1 - *ku;
|
|
i__1 = f2cmax(i__2,i__3);
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
if (*kl <= *ku) {
|
|
|
|
/* annihilate subdiagonal elements first (necessary if KL = 0) */
|
|
|
|
/* Computing MIN */
|
|
i__2 = *m - 1 - *kl;
|
|
if (i__ <= f2cmin(i__2,*n)) {
|
|
|
|
/* generate reflection to annihilate A(kl+i+1:m,i) */
|
|
|
|
i__2 = *m - *kl - i__ + 1;
|
|
wn = scnrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1);
|
|
r__1 = wn / c_abs(&a[*kl + i__ + i__ * a_dim1]);
|
|
i__2 = *kl + i__ + i__ * a_dim1;
|
|
q__1.r = r__1 * a[i__2].r, q__1.i = r__1 * a[i__2].i;
|
|
wa.r = q__1.r, wa.i = q__1.i;
|
|
if (wn == 0.f) {
|
|
tau.r = 0.f, tau.i = 0.f;
|
|
} else {
|
|
i__2 = *kl + i__ + i__ * a_dim1;
|
|
q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
|
|
wb.r = q__1.r, wb.i = q__1.i;
|
|
i__2 = *m - *kl - i__;
|
|
c_div(&q__1, &c_b2, &wb);
|
|
cscal_(&i__2, &q__1, &a[*kl + i__ + 1 + i__ * a_dim1], &
|
|
c__1);
|
|
i__2 = *kl + i__ + i__ * a_dim1;
|
|
a[i__2].r = 1.f, a[i__2].i = 0.f;
|
|
c_div(&q__1, &wb, &wa);
|
|
r__1 = q__1.r;
|
|
tau.r = r__1, tau.i = 0.f;
|
|
}
|
|
|
|
/* apply reflection to A(kl+i:m,i+1:n) from the left */
|
|
|
|
i__2 = *m - *kl - i__ + 1;
|
|
i__3 = *n - i__;
|
|
cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl +
|
|
i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ *
|
|
a_dim1], &c__1, &c_b1, &work[1], &c__1);
|
|
i__2 = *m - *kl - i__ + 1;
|
|
i__3 = *n - i__;
|
|
q__1.r = -tau.r, q__1.i = -tau.i;
|
|
cgerc_(&i__2, &i__3, &q__1, &a[*kl + i__ + i__ * a_dim1], &
|
|
c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) *
|
|
a_dim1], lda);
|
|
i__2 = *kl + i__ + i__ * a_dim1;
|
|
q__1.r = -wa.r, q__1.i = -wa.i;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
}
|
|
|
|
/* Computing MIN */
|
|
i__2 = *n - 1 - *ku;
|
|
if (i__ <= f2cmin(i__2,*m)) {
|
|
|
|
/* generate reflection to annihilate A(i,ku+i+1:n) */
|
|
|
|
i__2 = *n - *ku - i__ + 1;
|
|
wn = scnrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
|
|
r__1 = wn / c_abs(&a[i__ + (*ku + i__) * a_dim1]);
|
|
i__2 = i__ + (*ku + i__) * a_dim1;
|
|
q__1.r = r__1 * a[i__2].r, q__1.i = r__1 * a[i__2].i;
|
|
wa.r = q__1.r, wa.i = q__1.i;
|
|
if (wn == 0.f) {
|
|
tau.r = 0.f, tau.i = 0.f;
|
|
} else {
|
|
i__2 = i__ + (*ku + i__) * a_dim1;
|
|
q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
|
|
wb.r = q__1.r, wb.i = q__1.i;
|
|
i__2 = *n - *ku - i__;
|
|
c_div(&q__1, &c_b2, &wb);
|
|
cscal_(&i__2, &q__1, &a[i__ + (*ku + i__ + 1) * a_dim1],
|
|
lda);
|
|
i__2 = i__ + (*ku + i__) * a_dim1;
|
|
a[i__2].r = 1.f, a[i__2].i = 0.f;
|
|
c_div(&q__1, &wb, &wa);
|
|
r__1 = q__1.r;
|
|
tau.r = r__1, tau.i = 0.f;
|
|
}
|
|
|
|
/* apply reflection to A(i+1:m,ku+i:n) from the right */
|
|
|
|
i__2 = *n - *ku - i__ + 1;
|
|
clacgv_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
|
|
i__2 = *m - i__;
|
|
i__3 = *n - *ku - i__ + 1;
|
|
cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (*ku
|
|
+ i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1],
|
|
lda, &c_b1, &work[1], &c__1);
|
|
i__2 = *m - i__;
|
|
i__3 = *n - *ku - i__ + 1;
|
|
q__1.r = -tau.r, q__1.i = -tau.i;
|
|
cgerc_(&i__2, &i__3, &q__1, &work[1], &c__1, &a[i__ + (*ku +
|
|
i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) *
|
|
a_dim1], lda);
|
|
i__2 = i__ + (*ku + i__) * a_dim1;
|
|
q__1.r = -wa.r, q__1.i = -wa.i;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
}
|
|
} else {
|
|
|
|
/* annihilate superdiagonal elements first (necessary if */
|
|
/* KU = 0) */
|
|
|
|
/* Computing MIN */
|
|
i__2 = *n - 1 - *ku;
|
|
if (i__ <= f2cmin(i__2,*m)) {
|
|
|
|
/* generate reflection to annihilate A(i,ku+i+1:n) */
|
|
|
|
i__2 = *n - *ku - i__ + 1;
|
|
wn = scnrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
|
|
r__1 = wn / c_abs(&a[i__ + (*ku + i__) * a_dim1]);
|
|
i__2 = i__ + (*ku + i__) * a_dim1;
|
|
q__1.r = r__1 * a[i__2].r, q__1.i = r__1 * a[i__2].i;
|
|
wa.r = q__1.r, wa.i = q__1.i;
|
|
if (wn == 0.f) {
|
|
tau.r = 0.f, tau.i = 0.f;
|
|
} else {
|
|
i__2 = i__ + (*ku + i__) * a_dim1;
|
|
q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
|
|
wb.r = q__1.r, wb.i = q__1.i;
|
|
i__2 = *n - *ku - i__;
|
|
c_div(&q__1, &c_b2, &wb);
|
|
cscal_(&i__2, &q__1, &a[i__ + (*ku + i__ + 1) * a_dim1],
|
|
lda);
|
|
i__2 = i__ + (*ku + i__) * a_dim1;
|
|
a[i__2].r = 1.f, a[i__2].i = 0.f;
|
|
c_div(&q__1, &wb, &wa);
|
|
r__1 = q__1.r;
|
|
tau.r = r__1, tau.i = 0.f;
|
|
}
|
|
|
|
/* apply reflection to A(i+1:m,ku+i:n) from the right */
|
|
|
|
i__2 = *n - *ku - i__ + 1;
|
|
clacgv_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
|
|
i__2 = *m - i__;
|
|
i__3 = *n - *ku - i__ + 1;
|
|
cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (*ku
|
|
+ i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1],
|
|
lda, &c_b1, &work[1], &c__1);
|
|
i__2 = *m - i__;
|
|
i__3 = *n - *ku - i__ + 1;
|
|
q__1.r = -tau.r, q__1.i = -tau.i;
|
|
cgerc_(&i__2, &i__3, &q__1, &work[1], &c__1, &a[i__ + (*ku +
|
|
i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) *
|
|
a_dim1], lda);
|
|
i__2 = i__ + (*ku + i__) * a_dim1;
|
|
q__1.r = -wa.r, q__1.i = -wa.i;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
}
|
|
|
|
/* Computing MIN */
|
|
i__2 = *m - 1 - *kl;
|
|
if (i__ <= f2cmin(i__2,*n)) {
|
|
|
|
/* generate reflection to annihilate A(kl+i+1:m,i) */
|
|
|
|
i__2 = *m - *kl - i__ + 1;
|
|
wn = scnrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1);
|
|
r__1 = wn / c_abs(&a[*kl + i__ + i__ * a_dim1]);
|
|
i__2 = *kl + i__ + i__ * a_dim1;
|
|
q__1.r = r__1 * a[i__2].r, q__1.i = r__1 * a[i__2].i;
|
|
wa.r = q__1.r, wa.i = q__1.i;
|
|
if (wn == 0.f) {
|
|
tau.r = 0.f, tau.i = 0.f;
|
|
} else {
|
|
i__2 = *kl + i__ + i__ * a_dim1;
|
|
q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
|
|
wb.r = q__1.r, wb.i = q__1.i;
|
|
i__2 = *m - *kl - i__;
|
|
c_div(&q__1, &c_b2, &wb);
|
|
cscal_(&i__2, &q__1, &a[*kl + i__ + 1 + i__ * a_dim1], &
|
|
c__1);
|
|
i__2 = *kl + i__ + i__ * a_dim1;
|
|
a[i__2].r = 1.f, a[i__2].i = 0.f;
|
|
c_div(&q__1, &wb, &wa);
|
|
r__1 = q__1.r;
|
|
tau.r = r__1, tau.i = 0.f;
|
|
}
|
|
|
|
/* apply reflection to A(kl+i:m,i+1:n) from the left */
|
|
|
|
i__2 = *m - *kl - i__ + 1;
|
|
i__3 = *n - i__;
|
|
cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl +
|
|
i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ *
|
|
a_dim1], &c__1, &c_b1, &work[1], &c__1);
|
|
i__2 = *m - *kl - i__ + 1;
|
|
i__3 = *n - i__;
|
|
q__1.r = -tau.r, q__1.i = -tau.i;
|
|
cgerc_(&i__2, &i__3, &q__1, &a[*kl + i__ + i__ * a_dim1], &
|
|
c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) *
|
|
a_dim1], lda);
|
|
i__2 = *kl + i__ + i__ * a_dim1;
|
|
q__1.r = -wa.r, q__1.i = -wa.i;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
}
|
|
}
|
|
|
|
if (i__ <= *n) {
|
|
i__2 = *m;
|
|
for (j = *kl + i__ + 1; j <= i__2; ++j) {
|
|
i__3 = j + i__ * a_dim1;
|
|
a[i__3].r = 0.f, a[i__3].i = 0.f;
|
|
/* L50: */
|
|
}
|
|
}
|
|
|
|
if (i__ <= *m) {
|
|
i__2 = *n;
|
|
for (j = *ku + i__ + 1; j <= i__2; ++j) {
|
|
i__3 = i__ + j * a_dim1;
|
|
a[i__3].r = 0.f, a[i__3].i = 0.f;
|
|
/* L60: */
|
|
}
|
|
}
|
|
/* L70: */
|
|
}
|
|
return;
|
|
|
|
/* End of CLAGGE */
|
|
|
|
} /* clagge_ */
|
|
|