286 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			286 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CSPT03
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
 | 
						|
*                          RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDW, N
 | 
						|
*       REAL               RCOND, RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            A( * ), AINV( * ), WORK( LDW, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CSPT03 computes the residual for a complex symmetric packed matrix
 | 
						|
*> times its inverse:
 | 
						|
*>    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          complex symmetric matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (N*(N+1)/2)
 | 
						|
*>          The original complex symmetric matrix A, stored as a packed
 | 
						|
*>          triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AINV
 | 
						|
*> \verbatim
 | 
						|
*>          AINV is COMPLEX array, dimension (N*(N+1)/2)
 | 
						|
*>          The (symmetric) inverse of the matrix A, stored as a packed
 | 
						|
*>          triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (LDW,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDW
 | 
						|
*> \verbatim
 | 
						|
*>          LDW is INTEGER
 | 
						|
*>          The leading dimension of the array WORK.  LDW >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          The reciprocal of the condition number of A, computed as
 | 
						|
*>          ( 1/norm(A) ) / norm(AINV).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDW, N
 | 
						|
      REAL               RCOND, RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            A( * ), AINV( * ), WORK( LDW, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, ICOL, J, JCOL, K, KCOL, NALL
 | 
						|
      REAL               AINVNM, ANORM, EPS
 | 
						|
      COMPLEX            T
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               CLANGE, CLANSP, SLAMCH
 | 
						|
      COMPLEX            CDOTU
 | 
						|
      EXTERNAL           LSAME, CLANGE, CLANSP, SLAMCH, CDOTU
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      ANORM = CLANSP( '1', UPLO, N, A, RWORK )
 | 
						|
      AINVNM = CLANSP( '1', UPLO, N, AINV, RWORK )
 | 
						|
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
         RCOND = ZERO
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      RCOND = ( ONE/ANORM ) / AINVNM
 | 
						|
*
 | 
						|
*     Case where both A and AINV are upper triangular:
 | 
						|
*     Each element of - A * AINV is computed by taking the dot product
 | 
						|
*     of a row of A with a column of AINV.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 70 I = 1, N
 | 
						|
            ICOL = ( ( I-1 )*I ) / 2 + 1
 | 
						|
*
 | 
						|
*           Code when J <= I
 | 
						|
*
 | 
						|
            DO 30 J = 1, I
 | 
						|
               JCOL = ( ( J-1 )*J ) / 2 + 1
 | 
						|
               T = CDOTU( J, A( ICOL ), 1, AINV( JCOL ), 1 )
 | 
						|
               JCOL = JCOL + 2*J - 1
 | 
						|
               KCOL = ICOL - 1
 | 
						|
               DO 10 K = J + 1, I
 | 
						|
                  T = T + A( KCOL+K )*AINV( JCOL )
 | 
						|
                  JCOL = JCOL + K
 | 
						|
   10          CONTINUE
 | 
						|
               KCOL = KCOL + 2*I
 | 
						|
               DO 20 K = I + 1, N
 | 
						|
                  T = T + A( KCOL )*AINV( JCOL )
 | 
						|
                  KCOL = KCOL + K
 | 
						|
                  JCOL = JCOL + K
 | 
						|
   20          CONTINUE
 | 
						|
               WORK( I, J ) = -T
 | 
						|
   30       CONTINUE
 | 
						|
*
 | 
						|
*           Code when J > I
 | 
						|
*
 | 
						|
            DO 60 J = I + 1, N
 | 
						|
               JCOL = ( ( J-1 )*J ) / 2 + 1
 | 
						|
               T = CDOTU( I, A( ICOL ), 1, AINV( JCOL ), 1 )
 | 
						|
               JCOL = JCOL - 1
 | 
						|
               KCOL = ICOL + 2*I - 1
 | 
						|
               DO 40 K = I + 1, J
 | 
						|
                  T = T + A( KCOL )*AINV( JCOL+K )
 | 
						|
                  KCOL = KCOL + K
 | 
						|
   40          CONTINUE
 | 
						|
               JCOL = JCOL + 2*J
 | 
						|
               DO 50 K = J + 1, N
 | 
						|
                  T = T + A( KCOL )*AINV( JCOL )
 | 
						|
                  KCOL = KCOL + K
 | 
						|
                  JCOL = JCOL + K
 | 
						|
   50          CONTINUE
 | 
						|
               WORK( I, J ) = -T
 | 
						|
   60       CONTINUE
 | 
						|
   70    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Case where both A and AINV are lower triangular
 | 
						|
*
 | 
						|
         NALL = ( N*( N+1 ) ) / 2
 | 
						|
         DO 140 I = 1, N
 | 
						|
*
 | 
						|
*           Code when J <= I
 | 
						|
*
 | 
						|
            ICOL = NALL - ( ( N-I+1 )*( N-I+2 ) ) / 2 + 1
 | 
						|
            DO 100 J = 1, I
 | 
						|
               JCOL = NALL - ( ( N-J )*( N-J+1 ) ) / 2 - ( N-I )
 | 
						|
               T = CDOTU( N-I+1, A( ICOL ), 1, AINV( JCOL ), 1 )
 | 
						|
               KCOL = I
 | 
						|
               JCOL = J
 | 
						|
               DO 80 K = 1, J - 1
 | 
						|
                  T = T + A( KCOL )*AINV( JCOL )
 | 
						|
                  JCOL = JCOL + N - K
 | 
						|
                  KCOL = KCOL + N - K
 | 
						|
   80          CONTINUE
 | 
						|
               JCOL = JCOL - J
 | 
						|
               DO 90 K = J, I - 1
 | 
						|
                  T = T + A( KCOL )*AINV( JCOL+K )
 | 
						|
                  KCOL = KCOL + N - K
 | 
						|
   90          CONTINUE
 | 
						|
               WORK( I, J ) = -T
 | 
						|
  100       CONTINUE
 | 
						|
*
 | 
						|
*           Code when J > I
 | 
						|
*
 | 
						|
            ICOL = NALL - ( ( N-I )*( N-I+1 ) ) / 2
 | 
						|
            DO 130 J = I + 1, N
 | 
						|
               JCOL = NALL - ( ( N-J+1 )*( N-J+2 ) ) / 2 + 1
 | 
						|
               T = CDOTU( N-J+1, A( ICOL-N+J ), 1, AINV( JCOL ), 1 )
 | 
						|
               KCOL = I
 | 
						|
               JCOL = J
 | 
						|
               DO 110 K = 1, I - 1
 | 
						|
                  T = T + A( KCOL )*AINV( JCOL )
 | 
						|
                  JCOL = JCOL + N - K
 | 
						|
                  KCOL = KCOL + N - K
 | 
						|
  110          CONTINUE
 | 
						|
               KCOL = KCOL - I
 | 
						|
               DO 120 K = I, J - 1
 | 
						|
                  T = T + A( KCOL+K )*AINV( JCOL )
 | 
						|
                  JCOL = JCOL + N - K
 | 
						|
  120          CONTINUE
 | 
						|
               WORK( I, J ) = -T
 | 
						|
  130       CONTINUE
 | 
						|
  140    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Add the identity matrix to WORK .
 | 
						|
*
 | 
						|
      DO 150 I = 1, N
 | 
						|
         WORK( I, I ) = WORK( I, I ) + ONE
 | 
						|
  150 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
 | 
						|
*
 | 
						|
      RESID = CLANGE( '1', N, N, WORK, LDW, RWORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CSPT03
 | 
						|
*
 | 
						|
      END
 |