271 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			271 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CTPQRT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CTPQRT + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpqrt.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpqrt.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpqrt.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
 | 
						|
*                          INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CTPQRT computes a blocked QR factorization of a complex 
 | 
						|
*> "triangular-pentagonal" matrix C, which is composed of a 
 | 
						|
*> triangular block A and pentagonal block B, using the compact 
 | 
						|
*> WY representation for Q.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix B.  
 | 
						|
*>          M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix B, and the order of the
 | 
						|
*>          triangular matrix A.
 | 
						|
*>          N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is INTEGER
 | 
						|
*>          The number of rows of the upper trapezoidal part of B.
 | 
						|
*>          MIN(M,N) >= L >= 0.  See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The block size to be used in the blocked QR.  N >= NB >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the upper triangular N-by-N matrix A.
 | 
						|
*>          On exit, the elements on and above the diagonal of the array
 | 
						|
*>          contain the upper triangular matrix R.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,N)
 | 
						|
*>          On entry, the pentagonal M-by-N matrix B.  The first M-L rows 
 | 
						|
*>          are rectangular, and the last L rows are upper trapezoidal.
 | 
						|
*>          On exit, B contains the pentagonal matrix V.  See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is COMPLEX array, dimension (LDT,N)
 | 
						|
*>          The upper triangular block reflectors stored in compact form
 | 
						|
*>          as a sequence of upper triangular blocks.  See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>          
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= NB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (NB*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2013
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The input matrix C is a (N+M)-by-N matrix  
 | 
						|
*>
 | 
						|
*>               C = [ A ]
 | 
						|
*>                   [ B ]        
 | 
						|
*>
 | 
						|
*>  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
 | 
						|
*>  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
 | 
						|
*>  upper trapezoidal matrix B2:
 | 
						|
*>
 | 
						|
*>               B = [ B1 ]  <- (M-L)-by-N rectangular
 | 
						|
*>                   [ B2 ]  <-     L-by-N upper trapezoidal.
 | 
						|
*>
 | 
						|
*>  The upper trapezoidal matrix B2 consists of the first L rows of a
 | 
						|
*>  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0, 
 | 
						|
*>  B is rectangular M-by-N; if M=L=N, B is upper triangular.  
 | 
						|
*>
 | 
						|
*>  The matrix W stores the elementary reflectors H(i) in the i-th column
 | 
						|
*>  below the diagonal (of A) in the (N+M)-by-N input matrix C
 | 
						|
*>
 | 
						|
*>               C = [ A ]  <- upper triangular N-by-N
 | 
						|
*>                   [ B ]  <- M-by-N pentagonal
 | 
						|
*>
 | 
						|
*>  so that W can be represented as
 | 
						|
*>
 | 
						|
*>               W = [ I ]  <- identity, N-by-N
 | 
						|
*>                   [ V ]  <- M-by-N, same form as B.
 | 
						|
*>
 | 
						|
*>  Thus, all of information needed for W is contained on exit in B, which
 | 
						|
*>  we call V above.  Note that V has the same form as B; that is, 
 | 
						|
*>
 | 
						|
*>               V = [ V1 ] <- (M-L)-by-N rectangular
 | 
						|
*>                   [ V2 ] <-     L-by-N upper trapezoidal.
 | 
						|
*>
 | 
						|
*>  The columns of V represent the vectors which define the H(i)'s.  
 | 
						|
*>
 | 
						|
*>  The number of blocks is B = ceiling(N/NB), where each
 | 
						|
*>  block is of order NB except for the last block, which is of order 
 | 
						|
*>  IB = N - (B-1)*NB.  For each of the B blocks, a upper triangular block
 | 
						|
*>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB 
 | 
						|
*>  for the last block) T's are stored in the NB-by-N matrix T as
 | 
						|
*>
 | 
						|
*>               T = [T1 T2 ... TB].
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.5.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2013
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER    I, IB, LB, MB, IINFO
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL   CTPQRT2, CTPRFB, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NB.LT.1 .OR. (NB.GT.N .AND. N.GT.0)) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDT.LT.NB ) THEN
 | 
						|
         INFO = -10
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CTPQRT', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
 | 
						|
*
 | 
						|
      DO I = 1, N, NB
 | 
						|
*     
 | 
						|
*     Compute the QR factorization of the current block
 | 
						|
*
 | 
						|
         IB = MIN( N-I+1, NB )
 | 
						|
         MB = MIN( M-L+I+IB-1, M )
 | 
						|
         IF( I.GE.L ) THEN
 | 
						|
            LB = 0
 | 
						|
         ELSE
 | 
						|
            LB = MB-M+L-I+1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         CALL CTPQRT2( MB, IB, LB, A(I,I), LDA, B( 1, I ), LDB, 
 | 
						|
     $                 T(1, I ), LDT, IINFO )
 | 
						|
*
 | 
						|
*     Update by applying H**H to B(:,I+IB:N) from the left
 | 
						|
*
 | 
						|
         IF( I+IB.LE.N ) THEN
 | 
						|
            CALL CTPRFB( 'L', 'C', 'F', 'C', MB, N-I-IB+1, IB, LB,
 | 
						|
     $                    B( 1, I ), LDB, T( 1, I ), LDT, 
 | 
						|
     $                    A( I, I+IB ), LDA, B( 1, I+IB ), LDB, 
 | 
						|
     $                    WORK, IB )
 | 
						|
         END IF
 | 
						|
      END DO
 | 
						|
      RETURN
 | 
						|
*     
 | 
						|
*     End of CTPQRT
 | 
						|
*
 | 
						|
      END
 |