520 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CTGSNA
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CTGSNA + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsna.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsna.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsna.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 | 
						|
*                          LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
 | 
						|
*                          IWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          HOWMNY, JOB
 | 
						|
*       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            SELECT( * )
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               DIF( * ), S( * )
 | 
						|
*       COMPLEX            A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
 | 
						|
*      $                   VR( LDVR, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CTGSNA estimates reciprocal condition numbers for specified
 | 
						|
*> eigenvalues and/or eigenvectors of a matrix pair (A, B).
 | 
						|
*>
 | 
						|
*> (A, B) must be in generalized Schur canonical form, that is, A and
 | 
						|
*> B are both upper triangular.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is CHARACTER*1
 | 
						|
*>          Specifies whether condition numbers are required for
 | 
						|
*>          eigenvalues (S) or eigenvectors (DIF):
 | 
						|
*>          = 'E': for eigenvalues only (S);
 | 
						|
*>          = 'V': for eigenvectors only (DIF);
 | 
						|
*>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] HOWMNY
 | 
						|
*> \verbatim
 | 
						|
*>          HOWMNY is CHARACTER*1
 | 
						|
*>          = 'A': compute condition numbers for all eigenpairs;
 | 
						|
*>          = 'S': compute condition numbers for selected eigenpairs
 | 
						|
*>                 specified by the array SELECT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SELECT
 | 
						|
*> \verbatim
 | 
						|
*>          SELECT is LOGICAL array, dimension (N)
 | 
						|
*>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
 | 
						|
*>          condition numbers are required. To select condition numbers
 | 
						|
*>          for the corresponding j-th eigenvalue and/or eigenvector,
 | 
						|
*>          SELECT(j) must be set to .TRUE..
 | 
						|
*>          If HOWMNY = 'A', SELECT is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the square matrix pair (A, B). N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          The upper triangular matrix A in the pair (A,B).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,N)
 | 
						|
*>          The upper triangular matrix B in the pair (A, B).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is COMPLEX array, dimension (LDVL,M)
 | 
						|
*>          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
 | 
						|
*>          (A, B), corresponding to the eigenpairs specified by HOWMNY
 | 
						|
*>          and SELECT.  The eigenvectors must be stored in consecutive
 | 
						|
*>          columns of VL, as returned by CTGEVC.
 | 
						|
*>          If JOB = 'V', VL is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of the array VL. LDVL >= 1; and
 | 
						|
*>          If JOB = 'E' or 'B', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is COMPLEX array, dimension (LDVR,M)
 | 
						|
*>          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
 | 
						|
*>          (A, B), corresponding to the eigenpairs specified by HOWMNY
 | 
						|
*>          and SELECT.  The eigenvectors must be stored in consecutive
 | 
						|
*>          columns of VR, as returned by CTGEVC.
 | 
						|
*>          If JOB = 'V', VR is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the array VR. LDVR >= 1;
 | 
						|
*>          If JOB = 'E' or 'B', LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL array, dimension (MM)
 | 
						|
*>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
 | 
						|
*>          selected eigenvalues, stored in consecutive elements of the
 | 
						|
*>          array.
 | 
						|
*>          If JOB = 'V', S is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DIF
 | 
						|
*> \verbatim
 | 
						|
*>          DIF is REAL array, dimension (MM)
 | 
						|
*>          If JOB = 'V' or 'B', the estimated reciprocal condition
 | 
						|
*>          numbers of the selected eigenvectors, stored in consecutive
 | 
						|
*>          elements of the array.
 | 
						|
*>          If the eigenvalues cannot be reordered to compute DIF(j),
 | 
						|
*>          DIF(j) is set to 0; this can only occur when the true value
 | 
						|
*>          would be very small anyway.
 | 
						|
*>          For each eigenvalue/vector specified by SELECT, DIF stores
 | 
						|
*>          a Frobenius norm-based estimate of Difl.
 | 
						|
*>          If JOB = 'E', DIF is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MM
 | 
						|
*> \verbatim
 | 
						|
*>          MM is INTEGER
 | 
						|
*>          The number of elements in the arrays S and DIF. MM >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of elements of the arrays S and DIF used to store
 | 
						|
*>          the specified condition numbers; for each selected eigenvalue
 | 
						|
*>          one element is used. If HOWMNY = 'A', M is set to N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= max(1,N).
 | 
						|
*>          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N+2)
 | 
						|
*>          If JOB = 'E', IWORK is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: Successful exit
 | 
						|
*>          < 0: If INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The reciprocal of the condition number of the i-th generalized
 | 
						|
*>  eigenvalue w = (a, b) is defined as
 | 
						|
*>
 | 
						|
*>          S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
 | 
						|
*>
 | 
						|
*>  where u and v are the right and left eigenvectors of (A, B)
 | 
						|
*>  corresponding to w; |z| denotes the absolute value of the complex
 | 
						|
*>  number, and norm(u) denotes the 2-norm of the vector u. The pair
 | 
						|
*>  (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
 | 
						|
*>  matrix pair (A, B). If both a and b equal zero, then (A,B) is
 | 
						|
*>  singular and S(I) = -1 is returned.
 | 
						|
*>
 | 
						|
*>  An approximate error bound on the chordal distance between the i-th
 | 
						|
*>  computed generalized eigenvalue w and the corresponding exact
 | 
						|
*>  eigenvalue lambda is
 | 
						|
*>
 | 
						|
*>          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
 | 
						|
*>
 | 
						|
*>  where EPS is the machine precision.
 | 
						|
*>
 | 
						|
*>  The reciprocal of the condition number of the right eigenvector u
 | 
						|
*>  and left eigenvector v corresponding to the generalized eigenvalue w
 | 
						|
*>  is defined as follows. Suppose
 | 
						|
*>
 | 
						|
*>                   (A, B) = ( a   *  ) ( b  *  )  1
 | 
						|
*>                            ( 0  A22 ),( 0 B22 )  n-1
 | 
						|
*>                              1  n-1     1 n-1
 | 
						|
*>
 | 
						|
*>  Then the reciprocal condition number DIF(I) is
 | 
						|
*>
 | 
						|
*>          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
 | 
						|
*>
 | 
						|
*>  where sigma-min(Zl) denotes the smallest singular value of
 | 
						|
*>
 | 
						|
*>         Zl = [ kron(a, In-1) -kron(1, A22) ]
 | 
						|
*>              [ kron(b, In-1) -kron(1, B22) ].
 | 
						|
*>
 | 
						|
*>  Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
 | 
						|
*>  transpose of X. kron(X, Y) is the Kronecker product between the
 | 
						|
*>  matrices X and Y.
 | 
						|
*>
 | 
						|
*>  We approximate the smallest singular value of Zl with an upper
 | 
						|
*>  bound. This is done by CLATDF.
 | 
						|
*>
 | 
						|
*>  An approximate error bound for a computed eigenvector VL(i) or
 | 
						|
*>  VR(i) is given by
 | 
						|
*>
 | 
						|
*>                      EPS * norm(A, B) / DIF(i).
 | 
						|
*>
 | 
						|
*>  See ref. [2-3] for more details and further references.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | 
						|
*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | 
						|
*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | 
						|
*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | 
						|
*>
 | 
						|
*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | 
						|
*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | 
						|
*>      Estimation: Theory, Algorithms and Software, Report
 | 
						|
*>      UMINF - 94.04, Department of Computing Science, Umea University,
 | 
						|
*>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
 | 
						|
*>      To appear in Numerical Algorithms, 1996.
 | 
						|
*>
 | 
						|
*>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | 
						|
*>      for Solving the Generalized Sylvester Equation and Estimating the
 | 
						|
*>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | 
						|
*>      Department of Computing Science, Umea University, S-901 87 Umea,
 | 
						|
*>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
 | 
						|
*>      Note 75.
 | 
						|
*>      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 | 
						|
     $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          HOWMNY, JOB
 | 
						|
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            SELECT( * )
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               DIF( * ), S( * )
 | 
						|
      COMPLEX            A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
 | 
						|
     $                   VR( LDVR, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      INTEGER            IDIFJB
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, IDIFJB = 3 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, SOMCON, WANTBH, WANTDF, WANTS
 | 
						|
      INTEGER            I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
 | 
						|
      REAL               BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
 | 
						|
      COMPLEX            YHAX, YHBX
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      COMPLEX            DUMMY( 1 ), DUMMY1( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SCNRM2, SLAMCH, SLAPY2
 | 
						|
      COMPLEX            CDOTC
 | 
						|
      EXTERNAL           LSAME, SCNRM2, SLAMCH, SLAPY2, CDOTC
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV, CLACPY, CTGEXC, CTGSYL, SLABAD, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CMPLX, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test the input parameters
 | 
						|
*
 | 
						|
      WANTBH = LSAME( JOB, 'B' )
 | 
						|
      WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
 | 
						|
      WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
 | 
						|
*
 | 
						|
      SOMCON = LSAME( HOWMNY, 'S' )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
 | 
						|
         INFO = -12
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Set M to the number of eigenpairs for which condition numbers
 | 
						|
*        are required, and test MM.
 | 
						|
*
 | 
						|
         IF( SOMCON ) THEN
 | 
						|
            M = 0
 | 
						|
            DO 10 K = 1, N
 | 
						|
               IF( SELECT( K ) )
 | 
						|
     $            M = M + 1
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            M = N
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( N.EQ.0 ) THEN
 | 
						|
            LWMIN = 1
 | 
						|
         ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
 | 
						|
            LWMIN = 2*N*N
 | 
						|
         ELSE
 | 
						|
            LWMIN = N
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
*
 | 
						|
         IF( MM.LT.M ) THEN
 | 
						|
            INFO = -15
 | 
						|
         ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -18
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CTGSNA', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SMLNUM = SLAMCH( 'S' ) / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL SLABAD( SMLNUM, BIGNUM )
 | 
						|
      KS = 0
 | 
						|
      DO 20 K = 1, N
 | 
						|
*
 | 
						|
*        Determine whether condition numbers are required for the k-th
 | 
						|
*        eigenpair.
 | 
						|
*
 | 
						|
         IF( SOMCON ) THEN
 | 
						|
            IF( .NOT.SELECT( K ) )
 | 
						|
     $         GO TO 20
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         KS = KS + 1
 | 
						|
*
 | 
						|
         IF( WANTS ) THEN
 | 
						|
*
 | 
						|
*           Compute the reciprocal condition number of the k-th
 | 
						|
*           eigenvalue.
 | 
						|
*
 | 
						|
            RNRM = SCNRM2( N, VR( 1, KS ), 1 )
 | 
						|
            LNRM = SCNRM2( N, VL( 1, KS ), 1 )
 | 
						|
            CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), A, LDA,
 | 
						|
     $                  VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
 | 
						|
            YHAX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
 | 
						|
            CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), B, LDB,
 | 
						|
     $                  VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
 | 
						|
            YHBX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
 | 
						|
            COND = SLAPY2( ABS( YHAX ), ABS( YHBX ) )
 | 
						|
            IF( COND.EQ.ZERO ) THEN
 | 
						|
               S( KS ) = -ONE
 | 
						|
            ELSE
 | 
						|
               S( KS ) = COND / ( RNRM*LNRM )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( WANTDF ) THEN
 | 
						|
            IF( N.EQ.1 ) THEN
 | 
						|
               DIF( KS ) = SLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Estimate the reciprocal condition number of the k-th
 | 
						|
*              eigenvectors.
 | 
						|
*
 | 
						|
*              Copy the matrix (A, B) to the array WORK and move the
 | 
						|
*              (k,k)th pair to the (1,1) position.
 | 
						|
*
 | 
						|
               CALL CLACPY( 'Full', N, N, A, LDA, WORK, N )
 | 
						|
               CALL CLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
 | 
						|
               IFST = K
 | 
						|
               ILST = 1
 | 
						|
*
 | 
						|
               CALL CTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
 | 
						|
     $                      N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
 | 
						|
*
 | 
						|
               IF( IERR.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                 Ill-conditioned problem - swap rejected.
 | 
						|
*
 | 
						|
                  DIF( KS ) = ZERO
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Reordering successful, solve generalized Sylvester
 | 
						|
*                 equation for R and L,
 | 
						|
*                            A22 * R - L * A11 = A12
 | 
						|
*                            B22 * R - L * B11 = B12,
 | 
						|
*                 and compute estimate of Difl[(A11,B11), (A22, B22)].
 | 
						|
*
 | 
						|
                  N1 = 1
 | 
						|
                  N2 = N - N1
 | 
						|
                  I = N*N + 1
 | 
						|
                  CALL CTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
 | 
						|
     $                         N, WORK, N, WORK( N1+1 ), N,
 | 
						|
     $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
 | 
						|
     $                         WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
 | 
						|
     $                         1, IWORK, IERR )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CTGSNA
 | 
						|
*
 | 
						|
      END
 |