559 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			559 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZCHKGT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
 | |
| *                          A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            TSTERR
 | |
| *       INTEGER            NN, NNS, NOUT
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            IWORK( * ), NSVAL( * ), NVAL( * )
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( * ), AF( * ), B( * ), WORK( * ), X( * ),
 | |
| *      $                   XACT( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZCHKGT tests ZGTTRF, -TRS, -RFS, and -CON
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          The matrix types to be used for testing.  Matrices of type j
 | |
| *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | |
| *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER
 | |
| *>          The number of values of N contained in the vector NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NVAL
 | |
| *> \verbatim
 | |
| *>          NVAL is INTEGER array, dimension (NN)
 | |
| *>          The values of the matrix dimension N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NNS
 | |
| *> \verbatim
 | |
| *>          NNS is INTEGER
 | |
| *>          The number of values of NRHS contained in the vector NSVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NSVAL
 | |
| *> \verbatim
 | |
| *>          NSVAL is INTEGER array, dimension (NNS)
 | |
| *>          The values of the number of right hand sides NRHS.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          The threshold value for the test ratios.  A result is
 | |
| *>          included in the output file if RESULT >= THRESH.  To have
 | |
| *>          every test ratio printed, use THRESH = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSTERR
 | |
| *> \verbatim
 | |
| *>          TSTERR is LOGICAL
 | |
| *>          Flag that indicates whether error exits are to be tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (NMAX*4)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AF
 | |
| *> \verbatim
 | |
| *>          AF is COMPLEX*16 array, dimension (NMAX*4)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
 | |
| *>          where NSMAX is the largest entry in NSVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension
 | |
| *>                      (NMAX*max(3,NSMAX))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension
 | |
| *>                      (max(NMAX)+2*NSMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (NMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUT
 | |
| *> \verbatim
 | |
| *>          NOUT is INTEGER
 | |
| *>          The unit number for output.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
 | |
|      $                   A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            TSTERR
 | |
|       INTEGER            NN, NNS, NOUT
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            IWORK( * ), NSVAL( * ), NVAL( * )
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( * ), AF( * ), B( * ), WORK( * ), X( * ),
 | |
|      $                   XACT( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
|       INTEGER            NTYPES
 | |
|       PARAMETER          ( NTYPES = 12 )
 | |
|       INTEGER            NTESTS
 | |
|       PARAMETER          ( NTESTS = 7 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            TRFCON, ZEROT
 | |
|       CHARACTER          DIST, NORM, TRANS, TYPE
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, IMAT, IN, INFO, IRHS, ITRAN, IX, IZERO, J,
 | |
|      $                   K, KL, KOFF, KU, LDA, M, MODE, N, NERRS, NFAIL,
 | |
|      $                   NIMAT, NRHS, NRUN
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, COND, RCOND, RCONDC, RCONDI,
 | |
|      $                   RCONDO
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       CHARACTER          TRANSS( 3 )
 | |
|       INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | |
|       DOUBLE PRECISION   RESULT( NTESTS )
 | |
|       COMPLEX*16         Z( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DGET06, DZASUM, ZLANGT
 | |
|       EXTERNAL           DGET06, DZASUM, ZLANGT
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ALAERH, ALAHD, ALASUM, ZCOPY, ZDSCAL, ZERRGE,
 | |
|      $                   ZGET04, ZGTCON, ZGTRFS, ZGTT01, ZGTT02, ZGTT05,
 | |
|      $                   ZGTTRF, ZGTTRS, ZLACPY, ZLAGTM, ZLARNV, ZLATB4,
 | |
|      $                   ZLATMS
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       LOGICAL            LERR, OK
 | |
|       CHARACTER*32       SRNAMT
 | |
|       INTEGER            INFOT, NUNIT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | |
|       COMMON             / SRNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
 | |
|      $                   'C' /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Zomplex precision'
 | |
|       PATH( 2: 3 ) = 'GT'
 | |
|       NRUN = 0
 | |
|       NFAIL = 0
 | |
|       NERRS = 0
 | |
|       DO 10 I = 1, 4
 | |
|          ISEED( I ) = ISEEDY( I )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Test the error exits
 | |
| *
 | |
|       IF( TSTERR )
 | |
|      $   CALL ZERRGE( PATH, NOUT )
 | |
|       INFOT = 0
 | |
| *
 | |
|       DO 110 IN = 1, NN
 | |
| *
 | |
| *        Do for each value of N in NVAL.
 | |
| *
 | |
|          N = NVAL( IN )
 | |
|          M = MAX( N-1, 0 )
 | |
|          LDA = MAX( 1, N )
 | |
|          NIMAT = NTYPES
 | |
|          IF( N.LE.0 )
 | |
|      $      NIMAT = 1
 | |
| *
 | |
|          DO 100 IMAT = 1, NIMAT
 | |
| *
 | |
| *           Do the tests only if DOTYPE( IMAT ) is true.
 | |
| *
 | |
|             IF( .NOT.DOTYPE( IMAT ) )
 | |
|      $         GO TO 100
 | |
| *
 | |
| *           Set up parameters with ZLATB4.
 | |
| *
 | |
|             CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | |
|      $                   COND, DIST )
 | |
| *
 | |
|             ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
 | |
|             IF( IMAT.LE.6 ) THEN
 | |
| *
 | |
| *              Types 1-6:  generate matrices of known condition number.
 | |
| *
 | |
|                KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
 | |
|                SRNAMT = 'ZLATMS'
 | |
|                CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
 | |
|      $                      ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Check the error code from ZLATMS.
 | |
| *
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, KL,
 | |
|      $                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
 | |
|                   GO TO 100
 | |
|                END IF
 | |
|                IZERO = 0
 | |
| *
 | |
|                IF( N.GT.1 ) THEN
 | |
|                   CALL ZCOPY( N-1, AF( 4 ), 3, A, 1 )
 | |
|                   CALL ZCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
 | |
|                END IF
 | |
|                CALL ZCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
 | |
|             ELSE
 | |
| *
 | |
| *              Types 7-12:  generate tridiagonal matrices with
 | |
| *              unknown condition numbers.
 | |
| *
 | |
|                IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
 | |
| *
 | |
| *                 Generate a matrix with elements whose real and
 | |
| *                 imaginary parts are from [-1,1].
 | |
| *
 | |
|                   CALL ZLARNV( 2, ISEED, N+2*M, A )
 | |
|                   IF( ANORM.NE.ONE )
 | |
|      $               CALL ZDSCAL( N+2*M, ANORM, A, 1 )
 | |
|                ELSE IF( IZERO.GT.0 ) THEN
 | |
| *
 | |
| *                 Reuse the last matrix by copying back the zeroed out
 | |
| *                 elements.
 | |
| *
 | |
|                   IF( IZERO.EQ.1 ) THEN
 | |
|                      A( N ) = Z( 2 )
 | |
|                      IF( N.GT.1 )
 | |
|      $                  A( 1 ) = Z( 3 )
 | |
|                   ELSE IF( IZERO.EQ.N ) THEN
 | |
|                      A( 3*N-2 ) = Z( 1 )
 | |
|                      A( 2*N-1 ) = Z( 2 )
 | |
|                   ELSE
 | |
|                      A( 2*N-2+IZERO ) = Z( 1 )
 | |
|                      A( N-1+IZERO ) = Z( 2 )
 | |
|                      A( IZERO ) = Z( 3 )
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
| *              If IMAT > 7, set one column of the matrix to 0.
 | |
| *
 | |
|                IF( .NOT.ZEROT ) THEN
 | |
|                   IZERO = 0
 | |
|                ELSE IF( IMAT.EQ.8 ) THEN
 | |
|                   IZERO = 1
 | |
|                   Z( 2 ) = A( N )
 | |
|                   A( N ) = ZERO
 | |
|                   IF( N.GT.1 ) THEN
 | |
|                      Z( 3 ) = A( 1 )
 | |
|                      A( 1 ) = ZERO
 | |
|                   END IF
 | |
|                ELSE IF( IMAT.EQ.9 ) THEN
 | |
|                   IZERO = N
 | |
|                   Z( 1 ) = A( 3*N-2 )
 | |
|                   Z( 2 ) = A( 2*N-1 )
 | |
|                   A( 3*N-2 ) = ZERO
 | |
|                   A( 2*N-1 ) = ZERO
 | |
|                ELSE
 | |
|                   IZERO = ( N+1 ) / 2
 | |
|                   DO 20 I = IZERO, N - 1
 | |
|                      A( 2*N-2+I ) = ZERO
 | |
|                      A( N-1+I ) = ZERO
 | |
|                      A( I ) = ZERO
 | |
|    20             CONTINUE
 | |
|                   A( 3*N-2 ) = ZERO
 | |
|                   A( 2*N-1 ) = ZERO
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *+    TEST 1
 | |
| *           Factor A as L*U and compute the ratio
 | |
| *              norm(L*U - A) / (n * norm(A) * EPS )
 | |
| *
 | |
|             CALL ZCOPY( N+2*M, A, 1, AF, 1 )
 | |
|             SRNAMT = 'ZGTTRF'
 | |
|             CALL ZGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
 | |
|      $                   IWORK, INFO )
 | |
| *
 | |
| *           Check error code from ZGTTRF.
 | |
| *
 | |
|             IF( INFO.NE.IZERO )
 | |
|      $         CALL ALAERH( PATH, 'ZGTTRF', INFO, IZERO, ' ', N, N, 1,
 | |
|      $                      1, -1, IMAT, NFAIL, NERRS, NOUT )
 | |
|             TRFCON = INFO.NE.0
 | |
| *
 | |
|             CALL ZGTT01( N, A, A( M+1 ), A( N+M+1 ), AF, AF( M+1 ),
 | |
|      $                   AF( N+M+1 ), AF( N+2*M+1 ), IWORK, WORK, LDA,
 | |
|      $                   RWORK, RESULT( 1 ) )
 | |
| *
 | |
| *           Print the test ratio if it is .GE. THRESH.
 | |
| *
 | |
|             IF( RESULT( 1 ).GE.THRESH ) THEN
 | |
|                IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $            CALL ALAHD( NOUT, PATH )
 | |
|                WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
 | |
|                NFAIL = NFAIL + 1
 | |
|             END IF
 | |
|             NRUN = NRUN + 1
 | |
| *
 | |
|             DO 50 ITRAN = 1, 2
 | |
|                TRANS = TRANSS( ITRAN )
 | |
|                IF( ITRAN.EQ.1 ) THEN
 | |
|                   NORM = 'O'
 | |
|                ELSE
 | |
|                   NORM = 'I'
 | |
|                END IF
 | |
|                ANORM = ZLANGT( NORM, N, A, A( M+1 ), A( N+M+1 ) )
 | |
| *
 | |
|                IF( .NOT.TRFCON ) THEN
 | |
| *
 | |
| *                 Use ZGTTRS to solve for one column at a time of
 | |
| *                 inv(A), computing the maximum column sum as we go.
 | |
| *
 | |
|                   AINVNM = ZERO
 | |
|                   DO 40 I = 1, N
 | |
|                      DO 30 J = 1, N
 | |
|                         X( J ) = ZERO
 | |
|    30                CONTINUE
 | |
|                      X( I ) = ONE
 | |
|                      CALL ZGTTRS( TRANS, N, 1, AF, AF( M+1 ),
 | |
|      $                            AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
 | |
|      $                            LDA, INFO )
 | |
|                      AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
 | |
|    40             CONTINUE
 | |
| *
 | |
| *                 Compute RCONDC = 1 / (norm(A) * norm(inv(A))
 | |
| *
 | |
|                   IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|                      RCONDC = ONE
 | |
|                   ELSE
 | |
|                      RCONDC = ( ONE / ANORM ) / AINVNM
 | |
|                   END IF
 | |
|                   IF( ITRAN.EQ.1 ) THEN
 | |
|                      RCONDO = RCONDC
 | |
|                   ELSE
 | |
|                      RCONDI = RCONDC
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   RCONDC = ZERO
 | |
|                END IF
 | |
| *
 | |
| *+    TEST 7
 | |
| *              Estimate the reciprocal of the condition number of the
 | |
| *              matrix.
 | |
| *
 | |
|                SRNAMT = 'ZGTCON'
 | |
|                CALL ZGTCON( NORM, N, AF, AF( M+1 ), AF( N+M+1 ),
 | |
|      $                      AF( N+2*M+1 ), IWORK, ANORM, RCOND, WORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Check error code from ZGTCON.
 | |
| *
 | |
|                IF( INFO.NE.0 )
 | |
|      $            CALL ALAERH( PATH, 'ZGTCON', INFO, 0, NORM, N, N, -1,
 | |
|      $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
 | |
| *
 | |
|                RESULT( 7 ) = DGET06( RCOND, RCONDC )
 | |
| *
 | |
| *              Print the test ratio if it is .GE. THRESH.
 | |
| *
 | |
|                IF( RESULT( 7 ).GE.THRESH ) THEN
 | |
|                   IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $               CALL ALAHD( NOUT, PATH )
 | |
|                   WRITE( NOUT, FMT = 9997 )NORM, N, IMAT, 7,
 | |
|      $               RESULT( 7 )
 | |
|                   NFAIL = NFAIL + 1
 | |
|                END IF
 | |
|                NRUN = NRUN + 1
 | |
|    50       CONTINUE
 | |
| *
 | |
| *           Skip the remaining tests if the matrix is singular.
 | |
| *
 | |
|             IF( TRFCON )
 | |
|      $         GO TO 100
 | |
| *
 | |
|             DO 90 IRHS = 1, NNS
 | |
|                NRHS = NSVAL( IRHS )
 | |
| *
 | |
| *              Generate NRHS random solution vectors.
 | |
| *
 | |
|                IX = 1
 | |
|                DO 60 J = 1, NRHS
 | |
|                   CALL ZLARNV( 2, ISEED, N, XACT( IX ) )
 | |
|                   IX = IX + LDA
 | |
|    60          CONTINUE
 | |
| *
 | |
|                DO 80 ITRAN = 1, 3
 | |
|                   TRANS = TRANSS( ITRAN )
 | |
|                   IF( ITRAN.EQ.1 ) THEN
 | |
|                      RCONDC = RCONDO
 | |
|                   ELSE
 | |
|                      RCONDC = RCONDI
 | |
|                   END IF
 | |
| *
 | |
| *                 Set the right hand side.
 | |
| *
 | |
|                   CALL ZLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
 | |
|      $                         A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
 | |
| *
 | |
| *+    TEST 2
 | |
| *              Solve op(A) * X = B and compute the residual.
 | |
| *
 | |
|                   CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
 | |
|                   SRNAMT = 'ZGTTRS'
 | |
|                   CALL ZGTTRS( TRANS, N, NRHS, AF, AF( M+1 ),
 | |
|      $                         AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
 | |
|      $                         LDA, INFO )
 | |
| *
 | |
| *              Check error code from ZGTTRS.
 | |
| *
 | |
|                   IF( INFO.NE.0 )
 | |
|      $               CALL ALAERH( PATH, 'ZGTTRS', INFO, 0, TRANS, N, N,
 | |
|      $                            -1, -1, NRHS, IMAT, NFAIL, NERRS,
 | |
|      $                            NOUT )
 | |
| *
 | |
|                   CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | |
|                   CALL ZGTT02( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
 | |
|      $                         X, LDA, WORK, LDA, RESULT( 2 ) )
 | |
| *
 | |
| *+    TEST 3
 | |
| *              Check solution from generated exact solution.
 | |
| *
 | |
|                   CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | |
|      $                         RESULT( 3 ) )
 | |
| *
 | |
| *+    TESTS 4, 5, and 6
 | |
| *              Use iterative refinement to improve the solution.
 | |
| *
 | |
|                   SRNAMT = 'ZGTRFS'
 | |
|                   CALL ZGTRFS( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
 | |
|      $                         AF, AF( M+1 ), AF( N+M+1 ),
 | |
|      $                         AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
 | |
|      $                         RWORK, RWORK( NRHS+1 ), WORK,
 | |
|      $                         RWORK( 2*NRHS+1 ), INFO )
 | |
| *
 | |
| *              Check error code from ZGTRFS.
 | |
| *
 | |
|                   IF( INFO.NE.0 )
 | |
|      $               CALL ALAERH( PATH, 'ZGTRFS', INFO, 0, TRANS, N, N,
 | |
|      $                            -1, -1, NRHS, IMAT, NFAIL, NERRS,
 | |
|      $                            NOUT )
 | |
| *
 | |
|                   CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | |
|      $                         RESULT( 4 ) )
 | |
|                   CALL ZGTT05( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
 | |
|      $                         B, LDA, X, LDA, XACT, LDA, RWORK,
 | |
|      $                         RWORK( NRHS+1 ), RESULT( 5 ) )
 | |
| *
 | |
| *              Print information about the tests that did not pass the
 | |
| *              threshold.
 | |
| *
 | |
|                   DO 70 K = 2, 6
 | |
|                      IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                     CALL ALAHD( NOUT, PATH )
 | |
|                         WRITE( NOUT, FMT = 9998 )TRANS, N, NRHS, IMAT,
 | |
|      $                     K, RESULT( K )
 | |
|                         NFAIL = NFAIL + 1
 | |
|                      END IF
 | |
|    70             CONTINUE
 | |
|                   NRUN = NRUN + 5
 | |
|    80          CONTINUE
 | |
|    90       CONTINUE
 | |
|   100    CONTINUE
 | |
|   110 CONTINUE
 | |
| *
 | |
| *     Print a summary of the results.
 | |
| *
 | |
|       CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | |
| *
 | |
|  9999 FORMAT( 12X, 'N =', I5, ',', 10X, ' type ', I2, ', test(', I2,
 | |
|      $      ') = ', G12.5 )
 | |
|  9998 FORMAT( ' TRANS=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
 | |
|      $      I2, ', test(', I2, ') = ', G12.5 )
 | |
|  9997 FORMAT( ' NORM =''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
 | |
|      $      ', test(', I2, ') = ', G12.5 )
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZCHKGT
 | |
| *
 | |
|       END
 |