473 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			473 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZTGSY2 solves the generalized Sylvester equation (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZTGSY2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsy2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsy2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsy2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 | |
| *                          LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
 | |
| *                          INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
 | |
| *       DOUBLE PRECISION   RDSCAL, RDSUM, SCALE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | |
| *      $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZTGSY2 solves the generalized Sylvester equation
 | |
| *>
 | |
| *>             A * R - L * B = scale * C               (1)
 | |
| *>             D * R - L * E = scale * F
 | |
| *>
 | |
| *> using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
 | |
| *> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
 | |
| *> N-by-N and M-by-N, respectively. A, B, D and E are upper triangular
 | |
| *> (i.e., (A,D) and (B,E) in generalized Schur form).
 | |
| *>
 | |
| *> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
 | |
| *> scaling factor chosen to avoid overflow.
 | |
| *>
 | |
| *> In matrix notation solving equation (1) corresponds to solve
 | |
| *> Zx = scale * b, where Z is defined as
 | |
| *>
 | |
| *>        Z = [ kron(In, A)  -kron(B**H, Im) ]             (2)
 | |
| *>            [ kron(In, D)  -kron(E**H, Im) ],
 | |
| *>
 | |
| *> Ik is the identity matrix of size k and X**H is the conjuguate transpose of X.
 | |
| *> kron(X, Y) is the Kronecker product between the matrices X and Y.
 | |
| *>
 | |
| *> If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b
 | |
| *> is solved for, which is equivalent to solve for R and L in
 | |
| *>
 | |
| *>             A**H * R  + D**H * L   = scale * C           (3)
 | |
| *>             R  * B**H + L  * E**H  = scale * -F
 | |
| *>
 | |
| *> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
 | |
| *> = sigma_min(Z) using reverse communicaton with ZLACON.
 | |
| *>
 | |
| *> ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL
 | |
| *> of an upper bound on the separation between to matrix pairs. Then
 | |
| *> the input (A, D), (B, E) are sub-pencils of two matrix pairs in
 | |
| *> ZTGSYL.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N', solve the generalized Sylvester equation (1).
 | |
| *>          = 'T': solve the 'transposed' system (3).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IJOB
 | |
| *> \verbatim
 | |
| *>          IJOB is INTEGER
 | |
| *>          Specifies what kind of functionality to be performed.
 | |
| *>          =0: solve (1) only.
 | |
| *>          =1: A contribution from this subsystem to a Frobenius
 | |
| *>              norm-based estimate of the separation between two matrix
 | |
| *>              pairs is computed. (look ahead strategy is used).
 | |
| *>          =2: A contribution from this subsystem to a Frobenius
 | |
| *>              norm-based estimate of the separation between two matrix
 | |
| *>              pairs is computed. (DGECON on sub-systems is used.)
 | |
| *>          Not referenced if TRANS = 'T'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          On entry, M specifies the order of A and D, and the row
 | |
| *>          dimension of C, F, R and L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          On entry, N specifies the order of B and E, and the column
 | |
| *>          dimension of C, F, R and L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA, M)
 | |
| *>          On entry, A contains an upper triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the matrix A. LDA >= max(1, M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB, N)
 | |
| *>          On entry, B contains an upper triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the matrix B. LDB >= max(1, N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX*16 array, dimension (LDC, N)
 | |
| *>          On entry, C contains the right-hand-side of the first matrix
 | |
| *>          equation in (1).
 | |
| *>          On exit, if IJOB = 0, C has been overwritten by the solution
 | |
| *>          R.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the matrix C. LDC >= max(1, M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is COMPLEX*16 array, dimension (LDD, M)
 | |
| *>          On entry, D contains an upper triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDD
 | |
| *> \verbatim
 | |
| *>          LDD is INTEGER
 | |
| *>          The leading dimension of the matrix D. LDD >= max(1, M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX*16 array, dimension (LDE, N)
 | |
| *>          On entry, E contains an upper triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDE
 | |
| *> \verbatim
 | |
| *>          LDE is INTEGER
 | |
| *>          The leading dimension of the matrix E. LDE >= max(1, N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] F
 | |
| *> \verbatim
 | |
| *>          F is COMPLEX*16 array, dimension (LDF, N)
 | |
| *>          On entry, F contains the right-hand-side of the second matrix
 | |
| *>          equation in (1).
 | |
| *>          On exit, if IJOB = 0, F has been overwritten by the solution
 | |
| *>          L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDF
 | |
| *> \verbatim
 | |
| *>          LDF is INTEGER
 | |
| *>          The leading dimension of the matrix F. LDF >= max(1, M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is DOUBLE PRECISION
 | |
| *>          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
 | |
| *>          R and L (C and F on entry) will hold the solutions to a
 | |
| *>          slightly perturbed system but the input matrices A, B, D and
 | |
| *>          E have not been changed. If SCALE = 0, R and L will hold the
 | |
| *>          solutions to the homogeneous system with C = F = 0.
 | |
| *>          Normally, SCALE = 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RDSUM
 | |
| *> \verbatim
 | |
| *>          RDSUM is DOUBLE PRECISION
 | |
| *>          On entry, the sum of squares of computed contributions to
 | |
| *>          the Dif-estimate under computation by ZTGSYL, where the
 | |
| *>          scaling factor RDSCAL (see below) has been factored out.
 | |
| *>          On exit, the corresponding sum of squares updated with the
 | |
| *>          contributions from the current sub-system.
 | |
| *>          If TRANS = 'T' RDSUM is not touched.
 | |
| *>          NOTE: RDSUM only makes sense when ZTGSY2 is called by
 | |
| *>          ZTGSYL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RDSCAL
 | |
| *> \verbatim
 | |
| *>          RDSCAL is DOUBLE PRECISION
 | |
| *>          On entry, scaling factor used to prevent overflow in RDSUM.
 | |
| *>          On exit, RDSCAL is updated w.r.t. the current contributions
 | |
| *>          in RDSUM.
 | |
| *>          If TRANS = 'T', RDSCAL is not touched.
 | |
| *>          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
 | |
| *>          ZTGSYL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          On exit, if INFO is set to
 | |
| *>            =0: Successful exit
 | |
| *>            <0: If INFO = -i, input argument number i is illegal.
 | |
| *>            >0: The matrix pairs (A, D) and (B, E) have common or very
 | |
| *>                close eigenvalues.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complex16SYauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 | |
|      $                   LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
 | |
|       DOUBLE PRECISION   RDSCAL, RDSUM, SCALE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | |
|      $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       INTEGER            LDZ
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRAN
 | |
|       INTEGER            I, IERR, J, K
 | |
|       DOUBLE PRECISION   SCALOC
 | |
|       COMPLEX*16         ALPHA
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IPIV( LDZ ), JPIV( LDZ )
 | |
|       COMPLEX*16         RHS( LDZ ), Z( LDZ, LDZ )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DCMPLX, DCONJG, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       IERR = 0
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( NOTRAN ) THEN
 | |
|          IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
 | |
|             INFO = -2
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( M.LE.0 ) THEN
 | |
|             INFO = -3
 | |
|          ELSE IF( N.LE.0 ) THEN
 | |
|             INFO = -4
 | |
|          ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|             INFO = -5
 | |
|          ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|             INFO = -8
 | |
|          ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|             INFO = -10
 | |
|          ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
 | |
|             INFO = -12
 | |
|          ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
 | |
|             INFO = -14
 | |
|          ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
 | |
|             INFO = -16
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZTGSY2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( NOTRAN ) THEN
 | |
| *
 | |
| *        Solve (I, J) - system
 | |
| *           A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
 | |
| *           D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
 | |
| *        for I = M, M - 1, ..., 1; J = 1, 2, ..., N
 | |
| *
 | |
|          SCALE = ONE
 | |
|          SCALOC = ONE
 | |
|          DO 30 J = 1, N
 | |
|             DO 20 I = M, 1, -1
 | |
| *
 | |
| *              Build 2 by 2 system
 | |
| *
 | |
|                Z( 1, 1 ) = A( I, I )
 | |
|                Z( 2, 1 ) = D( I, I )
 | |
|                Z( 1, 2 ) = -B( J, J )
 | |
|                Z( 2, 2 ) = -E( J, J )
 | |
| *
 | |
| *              Set up right hand side(s)
 | |
| *
 | |
|                RHS( 1 ) = C( I, J )
 | |
|                RHS( 2 ) = F( I, J )
 | |
| *
 | |
| *              Solve Z * x = RHS
 | |
| *
 | |
|                CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
 | |
|                IF( IERR.GT.0 )
 | |
|      $            INFO = IERR
 | |
|                IF( IJOB.EQ.0 ) THEN
 | |
|                   CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
 | |
|                   IF( SCALOC.NE.ONE ) THEN
 | |
|                      DO 10 K = 1, N
 | |
|                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
 | |
|      $                              C( 1, K ), 1 )
 | |
|                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
 | |
|      $                              F( 1, K ), 1 )
 | |
|    10                CONTINUE
 | |
|                      SCALE = SCALE*SCALOC
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL,
 | |
|      $                         IPIV, JPIV )
 | |
|                END IF
 | |
| *
 | |
| *              Unpack solution vector(s)
 | |
| *
 | |
|                C( I, J ) = RHS( 1 )
 | |
|                F( I, J ) = RHS( 2 )
 | |
| *
 | |
| *              Substitute R(I, J) and L(I, J) into remaining equation.
 | |
| *
 | |
|                IF( I.GT.1 ) THEN
 | |
|                   ALPHA = -RHS( 1 )
 | |
|                   CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 )
 | |
|                   CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 )
 | |
|                END IF
 | |
|                IF( J.LT.N ) THEN
 | |
|                   CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB,
 | |
|      $                        C( I, J+1 ), LDC )
 | |
|                   CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE,
 | |
|      $                        F( I, J+1 ), LDF )
 | |
|                END IF
 | |
| *
 | |
|    20       CONTINUE
 | |
|    30    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Solve transposed (I, J) - system:
 | |
| *           A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J)
 | |
| *           R(I, I) * B(J, J) + L(I, J) * E(J, J)   = -F(I, J)
 | |
| *        for I = 1, 2, ..., M, J = N, N - 1, ..., 1
 | |
| *
 | |
|          SCALE = ONE
 | |
|          SCALOC = ONE
 | |
|          DO 80 I = 1, M
 | |
|             DO 70 J = N, 1, -1
 | |
| *
 | |
| *              Build 2 by 2 system Z**H
 | |
| *
 | |
|                Z( 1, 1 ) = DCONJG( A( I, I ) )
 | |
|                Z( 2, 1 ) = -DCONJG( B( J, J ) )
 | |
|                Z( 1, 2 ) = DCONJG( D( I, I ) )
 | |
|                Z( 2, 2 ) = -DCONJG( E( J, J ) )
 | |
| *
 | |
| *
 | |
| *              Set up right hand side(s)
 | |
| *
 | |
|                RHS( 1 ) = C( I, J )
 | |
|                RHS( 2 ) = F( I, J )
 | |
| *
 | |
| *              Solve Z**H * x = RHS
 | |
| *
 | |
|                CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
 | |
|                IF( IERR.GT.0 )
 | |
|      $            INFO = IERR
 | |
|                CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
 | |
|                IF( SCALOC.NE.ONE ) THEN
 | |
|                   DO 40 K = 1, N
 | |
|                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
 | |
|      $                           1 )
 | |
|                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
 | |
|      $                           1 )
 | |
|    40             CONTINUE
 | |
|                   SCALE = SCALE*SCALOC
 | |
|                END IF
 | |
| *
 | |
| *              Unpack solution vector(s)
 | |
| *
 | |
|                C( I, J ) = RHS( 1 )
 | |
|                F( I, J ) = RHS( 2 )
 | |
| *
 | |
| *              Substitute R(I, J) and L(I, J) into remaining equation.
 | |
| *
 | |
|                DO 50 K = 1, J - 1
 | |
|                   F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) +
 | |
|      $                        RHS( 2 )*DCONJG( E( K, J ) )
 | |
|    50          CONTINUE
 | |
|                DO 60 K = I + 1, M
 | |
|                   C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) -
 | |
|      $                        DCONJG( D( I, K ) )*RHS( 2 )
 | |
|    60          CONTINUE
 | |
| *
 | |
|    70       CONTINUE
 | |
|    80    CONTINUE
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZTGSY2
 | |
| *
 | |
|       END
 |