444 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			444 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STRSM
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL ALPHA
 | |
| *       INTEGER LDA,LDB,M,N
 | |
| *       CHARACTER DIAG,SIDE,TRANSA,UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL A(LDA,*),B(LDB,*)
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STRSM  solves one of the matrix equations
 | |
| *>
 | |
| *>    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
 | |
| *>
 | |
| *> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 | |
| *> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
 | |
| *>
 | |
| *>    op( A ) = A   or   op( A ) = A**T.
 | |
| *>
 | |
| *> The matrix X is overwritten on B.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>           On entry, SIDE specifies whether op( A ) appears on the left
 | |
| *>           or right of X as follows:
 | |
| *>
 | |
| *>              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
 | |
| *>
 | |
| *>              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the matrix A is an upper or
 | |
| *>           lower triangular matrix as follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSA
 | |
| *> \verbatim
 | |
| *>          TRANSA is CHARACTER*1
 | |
| *>           On entry, TRANSA specifies the form of op( A ) to be used in
 | |
| *>           the matrix multiplication as follows:
 | |
| *>
 | |
| *>              TRANSA = 'N' or 'n'   op( A ) = A.
 | |
| *>
 | |
| *>              TRANSA = 'T' or 't'   op( A ) = A**T.
 | |
| *>
 | |
| *>              TRANSA = 'C' or 'c'   op( A ) = A**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>           On entry, DIAG specifies whether or not A is unit triangular
 | |
| *>           as follows:
 | |
| *>
 | |
| *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *>
 | |
| *>              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *>                                  triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           On entry, M specifies the number of rows of B. M must be at
 | |
| *>           least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the number of columns of B.  N must be
 | |
| *>           at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is REAL
 | |
| *>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
 | |
| *>           zero then  A is not referenced and  B need not be set before
 | |
| *>           entry.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array of DIMENSION ( LDA, k ),
 | |
| *>           where k is m when SIDE = 'L' or 'l'  
 | |
| *>             and k is n when SIDE = 'R' or 'r'.
 | |
| *>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
 | |
| *>           upper triangular part of the array  A must contain the upper
 | |
| *>           triangular matrix  and the strictly lower triangular part of
 | |
| *>           A is not referenced.
 | |
| *>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
 | |
| *>           lower triangular part of the array  A must contain the lower
 | |
| *>           triangular matrix  and the strictly upper triangular part of
 | |
| *>           A is not referenced.
 | |
| *>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
 | |
| *>           A  are not referenced either,  but are assumed to be  unity.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
 | |
| *>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
 | |
| *>           then LDA must be at least max( 1, n ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array of DIMENSION ( LDB, n ).
 | |
| *>           Before entry,  the leading  m by n part of the array  B must
 | |
| *>           contain  the  right-hand  side  matrix  B,  and  on exit  is
 | |
| *>           overwritten by the solution matrix  X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>           On entry, LDB specifies the first dimension of B as declared
 | |
| *>           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | |
| *>           max( 1, m ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_blas_level3
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 3 Blas routine.
 | |
| *>
 | |
| *>
 | |
| *>  -- Written on 8-February-1989.
 | |
| *>     Jack Dongarra, Argonne National Laboratory.
 | |
| *>     Iain Duff, AERE Harwell.
 | |
| *>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
 | |
| *
 | |
| *  -- Reference BLAS level3 routine (version 3.4.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL ALPHA
 | |
|       INTEGER LDA,LDB,M,N
 | |
|       CHARACTER DIAG,SIDE,TRANSA,UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL A(LDA,*),B(LDB,*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC MAX
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL TEMP
 | |
|       INTEGER I,INFO,J,K,NROWA
 | |
|       LOGICAL LSIDE,NOUNIT,UPPER
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       REAL ONE,ZERO
 | |
|       PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       LSIDE = LSAME(SIDE,'L')
 | |
|       IF (LSIDE) THEN
 | |
|           NROWA = M
 | |
|       ELSE
 | |
|           NROWA = N
 | |
|       END IF
 | |
|       NOUNIT = LSAME(DIAG,'N')
 | |
|       UPPER = LSAME(UPLO,'U')
 | |
| *
 | |
|       INFO = 0
 | |
|       IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
 | |
|      +         (.NOT.LSAME(TRANSA,'T')) .AND.
 | |
|      +         (.NOT.LSAME(TRANSA,'C'))) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (M.LT.0) THEN
 | |
|           INFO = 5
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 6
 | |
|       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | |
|           INFO = 9
 | |
|       ELSE IF (LDB.LT.MAX(1,M)) THEN
 | |
|           INFO = 11
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('STRSM ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF (M.EQ.0 .OR. N.EQ.0) RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF (ALPHA.EQ.ZERO) THEN
 | |
|           DO 20 J = 1,N
 | |
|               DO 10 I = 1,M
 | |
|                   B(I,J) = ZERO
 | |
|    10         CONTINUE
 | |
|    20     CONTINUE
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF (LSIDE) THEN
 | |
|           IF (LSAME(TRANSA,'N')) THEN
 | |
| *
 | |
| *           Form  B := alpha*inv( A )*B.
 | |
| *
 | |
|               IF (UPPER) THEN
 | |
|                   DO 60 J = 1,N
 | |
|                       IF (ALPHA.NE.ONE) THEN
 | |
|                           DO 30 I = 1,M
 | |
|                               B(I,J) = ALPHA*B(I,J)
 | |
|    30                     CONTINUE
 | |
|                       END IF
 | |
|                       DO 50 K = M,1,-1
 | |
|                           IF (B(K,J).NE.ZERO) THEN
 | |
|                               IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
 | |
|                               DO 40 I = 1,K - 1
 | |
|                                   B(I,J) = B(I,J) - B(K,J)*A(I,K)
 | |
|    40                         CONTINUE
 | |
|                           END IF
 | |
|    50                 CONTINUE
 | |
|    60             CONTINUE
 | |
|               ELSE
 | |
|                   DO 100 J = 1,N
 | |
|                       IF (ALPHA.NE.ONE) THEN
 | |
|                           DO 70 I = 1,M
 | |
|                               B(I,J) = ALPHA*B(I,J)
 | |
|    70                     CONTINUE
 | |
|                       END IF
 | |
|                       DO 90 K = 1,M
 | |
|                           IF (B(K,J).NE.ZERO) THEN
 | |
|                               IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
 | |
|                               DO 80 I = K + 1,M
 | |
|                                   B(I,J) = B(I,J) - B(K,J)*A(I,K)
 | |
|    80                         CONTINUE
 | |
|                           END IF
 | |
|    90                 CONTINUE
 | |
|   100             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
| *
 | |
| *           Form  B := alpha*inv( A**T )*B.
 | |
| *
 | |
|               IF (UPPER) THEN
 | |
|                   DO 130 J = 1,N
 | |
|                       DO 120 I = 1,M
 | |
|                           TEMP = ALPHA*B(I,J)
 | |
|                           DO 110 K = 1,I - 1
 | |
|                               TEMP = TEMP - A(K,I)*B(K,J)
 | |
|   110                     CONTINUE
 | |
|                           IF (NOUNIT) TEMP = TEMP/A(I,I)
 | |
|                           B(I,J) = TEMP
 | |
|   120                 CONTINUE
 | |
|   130             CONTINUE
 | |
|               ELSE
 | |
|                   DO 160 J = 1,N
 | |
|                       DO 150 I = M,1,-1
 | |
|                           TEMP = ALPHA*B(I,J)
 | |
|                           DO 140 K = I + 1,M
 | |
|                               TEMP = TEMP - A(K,I)*B(K,J)
 | |
|   140                     CONTINUE
 | |
|                           IF (NOUNIT) TEMP = TEMP/A(I,I)
 | |
|                           B(I,J) = TEMP
 | |
|   150                 CONTINUE
 | |
|   160             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       ELSE
 | |
|           IF (LSAME(TRANSA,'N')) THEN
 | |
| *
 | |
| *           Form  B := alpha*B*inv( A ).
 | |
| *
 | |
|               IF (UPPER) THEN
 | |
|                   DO 210 J = 1,N
 | |
|                       IF (ALPHA.NE.ONE) THEN
 | |
|                           DO 170 I = 1,M
 | |
|                               B(I,J) = ALPHA*B(I,J)
 | |
|   170                     CONTINUE
 | |
|                       END IF
 | |
|                       DO 190 K = 1,J - 1
 | |
|                           IF (A(K,J).NE.ZERO) THEN
 | |
|                               DO 180 I = 1,M
 | |
|                                   B(I,J) = B(I,J) - A(K,J)*B(I,K)
 | |
|   180                         CONTINUE
 | |
|                           END IF
 | |
|   190                 CONTINUE
 | |
|                       IF (NOUNIT) THEN
 | |
|                           TEMP = ONE/A(J,J)
 | |
|                           DO 200 I = 1,M
 | |
|                               B(I,J) = TEMP*B(I,J)
 | |
|   200                     CONTINUE
 | |
|                       END IF
 | |
|   210             CONTINUE
 | |
|               ELSE
 | |
|                   DO 260 J = N,1,-1
 | |
|                       IF (ALPHA.NE.ONE) THEN
 | |
|                           DO 220 I = 1,M
 | |
|                               B(I,J) = ALPHA*B(I,J)
 | |
|   220                     CONTINUE
 | |
|                       END IF
 | |
|                       DO 240 K = J + 1,N
 | |
|                           IF (A(K,J).NE.ZERO) THEN
 | |
|                               DO 230 I = 1,M
 | |
|                                   B(I,J) = B(I,J) - A(K,J)*B(I,K)
 | |
|   230                         CONTINUE
 | |
|                           END IF
 | |
|   240                 CONTINUE
 | |
|                       IF (NOUNIT) THEN
 | |
|                           TEMP = ONE/A(J,J)
 | |
|                           DO 250 I = 1,M
 | |
|                               B(I,J) = TEMP*B(I,J)
 | |
|   250                     CONTINUE
 | |
|                       END IF
 | |
|   260             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
| *
 | |
| *           Form  B := alpha*B*inv( A**T ).
 | |
| *
 | |
|               IF (UPPER) THEN
 | |
|                   DO 310 K = N,1,-1
 | |
|                       IF (NOUNIT) THEN
 | |
|                           TEMP = ONE/A(K,K)
 | |
|                           DO 270 I = 1,M
 | |
|                               B(I,K) = TEMP*B(I,K)
 | |
|   270                     CONTINUE
 | |
|                       END IF
 | |
|                       DO 290 J = 1,K - 1
 | |
|                           IF (A(J,K).NE.ZERO) THEN
 | |
|                               TEMP = A(J,K)
 | |
|                               DO 280 I = 1,M
 | |
|                                   B(I,J) = B(I,J) - TEMP*B(I,K)
 | |
|   280                         CONTINUE
 | |
|                           END IF
 | |
|   290                 CONTINUE
 | |
|                       IF (ALPHA.NE.ONE) THEN
 | |
|                           DO 300 I = 1,M
 | |
|                               B(I,K) = ALPHA*B(I,K)
 | |
|   300                     CONTINUE
 | |
|                       END IF
 | |
|   310             CONTINUE
 | |
|               ELSE
 | |
|                   DO 360 K = 1,N
 | |
|                       IF (NOUNIT) THEN
 | |
|                           TEMP = ONE/A(K,K)
 | |
|                           DO 320 I = 1,M
 | |
|                               B(I,K) = TEMP*B(I,K)
 | |
|   320                     CONTINUE
 | |
|                       END IF
 | |
|                       DO 340 J = K + 1,N
 | |
|                           IF (A(J,K).NE.ZERO) THEN
 | |
|                               TEMP = A(J,K)
 | |
|                               DO 330 I = 1,M
 | |
|                                   B(I,J) = B(I,J) - TEMP*B(I,K)
 | |
|   330                         CONTINUE
 | |
|                           END IF
 | |
|   340                 CONTINUE
 | |
|                       IF (ALPHA.NE.ONE) THEN
 | |
|                           DO 350 I = 1,M
 | |
|                               B(I,K) = ALPHA*B(I,K)
 | |
|   350                     CONTINUE
 | |
|                       END IF
 | |
|   360             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STRSM .
 | |
| *
 | |
|       END
 |