OpenBLAS/lapack-netlib/lapacke/example/example_ZGESV_rowmajor.c

162 lines
6.5 KiB
C

/*******************************************************************************
* Copyright (C) 2009-2011 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_zgesv Example.
======================
The program computes the solution to the system of linear
equations with a square matrix A and multiple
right-hand sides B, where A is the coefficient matrix:
( 1.23, -5.50) ( 7.91, -5.38) ( -9.80, -4.86) ( -7.32, 7.57)
( -2.14, -1.12) ( -9.92, -0.79) ( -9.18, -1.12) ( 1.37, 0.43)
( -4.30, -7.10) ( -6.47, 2.52) ( -6.51, -2.67) ( -5.86, 7.38)
( 1.27, 7.29) ( 8.90, 6.92) ( -8.82, 1.25) ( 5.41, 5.37)
and B is the right-hand side matrix:
( 8.33, -7.32) ( -6.11, -3.81)
( -6.18, -4.80) ( 0.14, -7.71)
( -5.71, -2.80) ( 1.41, 3.40)
( -1.60, 3.08) ( 8.54, -4.05)
Description.
============
The routine solves for X the system of linear equations A*X = B,
where A is an n-by-n matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding
solutions.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as A = P*L*U, where P is a permutation matrix, L
is unit lower triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations A*X = B.
Example Program Results.
========================
LAPACKE_zgesv (row-major, high-level) Example Program Results
Solution
( -1.09, -0.18) ( 1.28, 1.21)
( 0.97, 0.52) ( -0.22, -0.97)
( -0.20, 0.19) ( 0.53, 1.36)
( -0.59, 0.92) ( 2.22, -1.00)
Details of LU factorization
( -4.30, -7.10) ( -6.47, 2.52) ( -6.51, -2.67) ( -5.86, 7.38)
( 0.49, 0.47) ( 12.26, -3.57) ( -7.87, -0.49) ( -0.98, 6.71)
( 0.25, -0.15) ( -0.60, -0.37) (-11.70, -4.64) ( -1.35, 1.38)
( -0.83, -0.32) ( 0.05, 0.58) ( 0.93, -0.50) ( 2.66, 7.86)
Pivot indices
3 3 3 4
*/
#include <stdlib.h>
#include <stdio.h>
#include "lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, lapack_int m, lapack_int n, lapack_complex_double* a, lapack_int lda );
extern void print_int_vector( char* desc, lapack_int n, lapack_int* a );
/* Parameters */
#define N 4
#define NRHS 2
#define LDA N
#define LDB NRHS
/* Main program */
int main() {
/* Locals */
lapack_int n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
/* Local arrays */
lapack_int ipiv[N];
lapack_complex_double a[LDA*N];
lapack_complex_double b[LDB*N];
a[0] = lapack_make_complex_double( 1.23, -5.50);
a[1] = lapack_make_complex_double( 7.91, -5.38);
a[2] = lapack_make_complex_double(-9.80, -4.86);
a[3] = lapack_make_complex_double(-7.32, 7.57);
a[4] = lapack_make_complex_double(-2.14, -1.12);
a[5] = lapack_make_complex_double(-9.92, -0.79);
a[6] = lapack_make_complex_double(-9.18, -1.12);
a[7] = lapack_make_complex_double( 1.37, 0.43);
a[8] = lapack_make_complex_double(-4.30, -7.10);
a[9] = lapack_make_complex_double(-6.47, 2.52);
a[10] = lapack_make_complex_double(-6.51, -2.67);
a[11] = lapack_make_complex_double(-5.86, 7.38);
a[12] = lapack_make_complex_double( 1.27, 7.29);
a[13] = lapack_make_complex_double( 8.90, 6.92);
a[14] = lapack_make_complex_double(-8.82, 1.25);
a[15] = lapack_make_complex_double( 5.41, 5.37);
b[0] = lapack_make_complex_double( 8.33, -7.32);
b[1] = lapack_make_complex_double(-6.11, -3.81);
b[2] = lapack_make_complex_double(-6.18, -4.80);
b[3] = lapack_make_complex_double( 0.14, -7.71);
b[4] = lapack_make_complex_double(-5.71, -2.80);
b[5] = lapack_make_complex_double( 1.41, 3.40);
b[6] = lapack_make_complex_double(-1.60, 3.08);
b[7] = lapack_make_complex_double( 8.54, -4.05);
/* Print Entry Matrix */
print_matrix( "Entry Matrix A", n, n, a, lda );
/* Print Right Rand Side */
print_matrix( "Right Rand Side", n, nrhs, b, ldb );
printf( "\n" );
/* Executable statements */
printf( "LAPACKE_zgesv (row-major, high-level) Example Program Results\n" );
/* Solve the equations A*X = B */
info = LAPACKE_zgesv( LAPACK_ROW_MAJOR, n, nrhs, a, lda, ipiv, b, ldb );
/* Check for the exact singularity */
if( info > 0 ) {
printf( "The diagonal element of the triangular factor of A,\n" );
printf( "U(%i,%i) is zero, so that A is singular;\n", info, info );
printf( "the solution could not be computed.\n" );
exit( 1 );
}
/* Print solution */
print_matrix( "Solution", n, nrhs, b, ldb );
/* Print details of LU factorization */
print_matrix( "Details of LU factorization", n, n, a, lda );
/* Print pivot indices */
print_int_vector( "Pivot indices", n, ipiv );
exit( 0 );
} /* End of LAPACKE_zgesv Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, lapack_int m, lapack_int n, lapack_complex_double* a, lapack_int lda ) {
lapack_int i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", lapack_complex_double_real(a[i*lda+j]), lapack_complex_double_imag(a[i*lda+j]) );
printf( "\n" );
}
}
/* Auxiliary routine: printing a vector of integers */
void print_int_vector( char* desc, lapack_int n, lapack_int* a ) {
lapack_int j;
printf( "\n %s\n", desc );
for( j = 0; j < n; j++ ) printf( " %6i", a[j] );
printf( "\n" );
}