401 lines
10 KiB
Fortran
401 lines
10 KiB
Fortran
*> \brief \b DGEBAL
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DGEBAL + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebal.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebal.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebal.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOB
|
|
* INTEGER IHI, ILO, INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), SCALE( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGEBAL balances a general real matrix A. This involves, first,
|
|
*> permuting A by a similarity transformation to isolate eigenvalues
|
|
*> in the first 1 to ILO-1 and last IHI+1 to N elements on the
|
|
*> diagonal; and second, applying a diagonal similarity transformation
|
|
*> to rows and columns ILO to IHI to make the rows and columns as
|
|
*> close in norm as possible. Both steps are optional.
|
|
*>
|
|
*> Balancing may reduce the 1-norm of the matrix, and improve the
|
|
*> accuracy of the computed eigenvalues and/or eigenvectors.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOB
|
|
*> \verbatim
|
|
*> JOB is CHARACTER*1
|
|
*> Specifies the operations to be performed on A:
|
|
*> = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
|
|
*> for i = 1,...,N;
|
|
*> = 'P': permute only;
|
|
*> = 'S': scale only;
|
|
*> = 'B': both permute and scale.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE array, dimension (LDA,N)
|
|
*> On entry, the input matrix A.
|
|
*> On exit, A is overwritten by the balanced matrix.
|
|
*> If JOB = 'N', A is not referenced.
|
|
*> See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ILO
|
|
*> \verbatim
|
|
*> ILO is INTEGER
|
|
*> \endverbatim
|
|
*> \param[out] IHI
|
|
*> \verbatim
|
|
*> IHI is INTEGER
|
|
*> ILO and IHI are set to integers such that on exit
|
|
*> A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
|
|
*> If JOB = 'N' or 'S', ILO = 1 and IHI = N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCALE
|
|
*> \verbatim
|
|
*> SCALE is DOUBLE array, dimension (N)
|
|
*> Details of the permutations and scaling factors applied to
|
|
*> A. If P(j) is the index of the row and column interchanged
|
|
*> with row and column j and D(j) is the scaling factor
|
|
*> applied to row and column j, then
|
|
*> SCALE(j) = P(j) for j = 1,...,ILO-1
|
|
*> = D(j) for j = ILO,...,IHI
|
|
*> = P(j) for j = IHI+1,...,N.
|
|
*> The order in which the interchanges are made is N to IHI+1,
|
|
*> then 1 to ILO-1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2013
|
|
*
|
|
*> \ingroup doubleGEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The permutations consist of row and column interchanges which put
|
|
*> the matrix in the form
|
|
*>
|
|
*> ( T1 X Y )
|
|
*> P A P = ( 0 B Z )
|
|
*> ( 0 0 T2 )
|
|
*>
|
|
*> where T1 and T2 are upper triangular matrices whose eigenvalues lie
|
|
*> along the diagonal. The column indices ILO and IHI mark the starting
|
|
*> and ending columns of the submatrix B. Balancing consists of applying
|
|
*> a diagonal similarity transformation inv(D) * B * D to make the
|
|
*> 1-norms of each row of B and its corresponding column nearly equal.
|
|
*> The output matrix is
|
|
*>
|
|
*> ( T1 X*D Y )
|
|
*> ( 0 inv(D)*B*D inv(D)*Z ).
|
|
*> ( 0 0 T2 )
|
|
*>
|
|
*> Information about the permutations P and the diagonal matrix D is
|
|
*> returned in the vector SCALE.
|
|
*>
|
|
*> This subroutine is based on the EISPACK routine BALANC.
|
|
*>
|
|
*> Modified by Tzu-Yi Chen, Computer Science Division, University of
|
|
*> California at Berkeley, USA
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.5.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2013
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOB
|
|
INTEGER IHI, ILO, INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), SCALE( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
DOUBLE PRECISION SCLFAC
|
|
PARAMETER ( SCLFAC = 2.0D+0 )
|
|
DOUBLE PRECISION FACTOR
|
|
PARAMETER ( FACTOR = 0.95D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL NOCONV
|
|
INTEGER I, ICA, IEXC, IRA, J, K, L, M
|
|
DOUBLE PRECISION C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
|
|
$ SFMIN2
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL DISNAN, LSAME
|
|
INTEGER IDAMAX
|
|
DOUBLE PRECISION DLAMCH, DNRM2
|
|
EXTERNAL DISNAN, LSAME, IDAMAX, DLAMCH, DNRM2
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DSCAL, DSWAP, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
|
|
$ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DGEBAL', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
K = 1
|
|
L = N
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ GO TO 210
|
|
*
|
|
IF( LSAME( JOB, 'N' ) ) THEN
|
|
DO 10 I = 1, N
|
|
SCALE( I ) = ONE
|
|
10 CONTINUE
|
|
GO TO 210
|
|
END IF
|
|
*
|
|
IF( LSAME( JOB, 'S' ) )
|
|
$ GO TO 120
|
|
*
|
|
* Permutation to isolate eigenvalues if possible
|
|
*
|
|
GO TO 50
|
|
*
|
|
* Row and column exchange.
|
|
*
|
|
20 CONTINUE
|
|
SCALE( M ) = J
|
|
IF( J.EQ.M )
|
|
$ GO TO 30
|
|
*
|
|
CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
|
|
CALL DSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA )
|
|
*
|
|
30 CONTINUE
|
|
GO TO ( 40, 80 )IEXC
|
|
*
|
|
* Search for rows isolating an eigenvalue and push them down.
|
|
*
|
|
40 CONTINUE
|
|
IF( L.EQ.1 )
|
|
$ GO TO 210
|
|
L = L - 1
|
|
*
|
|
50 CONTINUE
|
|
DO 70 J = L, 1, -1
|
|
*
|
|
DO 60 I = 1, L
|
|
IF( I.EQ.J )
|
|
$ GO TO 60
|
|
IF( A( J, I ).NE.ZERO )
|
|
$ GO TO 70
|
|
60 CONTINUE
|
|
*
|
|
M = L
|
|
IEXC = 1
|
|
GO TO 20
|
|
70 CONTINUE
|
|
*
|
|
GO TO 90
|
|
*
|
|
* Search for columns isolating an eigenvalue and push them left.
|
|
*
|
|
80 CONTINUE
|
|
K = K + 1
|
|
*
|
|
90 CONTINUE
|
|
DO 110 J = K, L
|
|
*
|
|
DO 100 I = K, L
|
|
IF( I.EQ.J )
|
|
$ GO TO 100
|
|
IF( A( I, J ).NE.ZERO )
|
|
$ GO TO 110
|
|
100 CONTINUE
|
|
*
|
|
M = K
|
|
IEXC = 2
|
|
GO TO 20
|
|
110 CONTINUE
|
|
*
|
|
120 CONTINUE
|
|
DO 130 I = K, L
|
|
SCALE( I ) = ONE
|
|
130 CONTINUE
|
|
*
|
|
IF( LSAME( JOB, 'P' ) )
|
|
$ GO TO 210
|
|
*
|
|
* Balance the submatrix in rows K to L.
|
|
*
|
|
* Iterative loop for norm reduction
|
|
*
|
|
SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
|
|
SFMAX1 = ONE / SFMIN1
|
|
SFMIN2 = SFMIN1*SCLFAC
|
|
SFMAX2 = ONE / SFMIN2
|
|
*
|
|
140 CONTINUE
|
|
NOCONV = .FALSE.
|
|
*
|
|
DO 200 I = K, L
|
|
*
|
|
C = DNRM2( L-K+1, A( K, I ), 1 )
|
|
R = DNRM2( L-K+1, A( I, K ), LDA )
|
|
ICA = IDAMAX( L, A( 1, I ), 1 )
|
|
CA = ABS( A( ICA, I ) )
|
|
IRA = IDAMAX( N-K+1, A( I, K ), LDA )
|
|
RA = ABS( A( I, IRA+K-1 ) )
|
|
*
|
|
* Guard against zero C or R due to underflow.
|
|
*
|
|
IF( C.EQ.ZERO .OR. R.EQ.ZERO )
|
|
$ GO TO 200
|
|
G = R / SCLFAC
|
|
F = ONE
|
|
S = C + R
|
|
160 CONTINUE
|
|
IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
|
|
$ MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
|
|
IF( DISNAN( C+F+CA+R+G+RA ) ) THEN
|
|
*
|
|
* Exit if NaN to avoid infinite loop
|
|
*
|
|
INFO = -3
|
|
CALL XERBLA( 'DGEBAL', -INFO )
|
|
RETURN
|
|
END IF
|
|
F = F*SCLFAC
|
|
C = C*SCLFAC
|
|
CA = CA*SCLFAC
|
|
R = R / SCLFAC
|
|
G = G / SCLFAC
|
|
RA = RA / SCLFAC
|
|
GO TO 160
|
|
*
|
|
170 CONTINUE
|
|
G = C / SCLFAC
|
|
180 CONTINUE
|
|
IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
|
|
$ MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
|
|
F = F / SCLFAC
|
|
C = C / SCLFAC
|
|
G = G / SCLFAC
|
|
CA = CA / SCLFAC
|
|
R = R*SCLFAC
|
|
RA = RA*SCLFAC
|
|
GO TO 180
|
|
*
|
|
* Now balance.
|
|
*
|
|
190 CONTINUE
|
|
IF( ( C+R ).GE.FACTOR*S )
|
|
$ GO TO 200
|
|
IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
|
|
IF( F*SCALE( I ).LE.SFMIN1 )
|
|
$ GO TO 200
|
|
END IF
|
|
IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
|
|
IF( SCALE( I ).GE.SFMAX1 / F )
|
|
$ GO TO 200
|
|
END IF
|
|
G = ONE / F
|
|
SCALE( I ) = SCALE( I )*F
|
|
NOCONV = .TRUE.
|
|
*
|
|
CALL DSCAL( N-K+1, G, A( I, K ), LDA )
|
|
CALL DSCAL( L, F, A( 1, I ), 1 )
|
|
*
|
|
200 CONTINUE
|
|
*
|
|
IF( NOCONV )
|
|
$ GO TO 140
|
|
*
|
|
210 CONTINUE
|
|
ILO = K
|
|
IHI = L
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DGEBAL
|
|
*
|
|
END
|