230 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          ROWCOL
 | |
| *       INTEGER            LDU, LWORK, M, N
 | |
| *       REAL               RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               U( LDU, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SORT01 checks that the matrix U is orthogonal by computing the ratio
 | |
| *>
 | |
| *>    RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
 | |
| *> or
 | |
| *>    RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
 | |
| *>
 | |
| *> Alternatively, if there isn't sufficient workspace to form
 | |
| *> I - U*U' or I - U'*U, the ratio is computed as
 | |
| *>
 | |
| *>    RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
 | |
| *> or
 | |
| *>    RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
 | |
| *>
 | |
| *> where EPS is the machine precision.  ROWCOL is used only if m = n;
 | |
| *> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is
 | |
| *> assumed to be 'R'.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ROWCOL
 | |
| *> \verbatim
 | |
| *>          ROWCOL is CHARACTER
 | |
| *>          Specifies whether the rows or columns of U should be checked
 | |
| *>          for orthogonality.  Used only if M = N.
 | |
| *>          = 'R':  Check for orthogonal rows of U
 | |
| *>          = 'C':  Check for orthogonal columns of U
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is REAL array, dimension (LDU,N)
 | |
| *>          The orthogonal matrix U.  U is checked for orthogonal columns
 | |
| *>          if m > n or if m = n and ROWCOL = 'C'.  U is checked for
 | |
| *>          orthogonal rows if m < n or if m = n and ROWCOL = 'R'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U.  LDU >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  For best performance, LWORK
 | |
| *>          should be at least N*(N+1) if ROWCOL = 'C' or M*(M+1) if
 | |
| *>          ROWCOL = 'R', but the test will be done even if LWORK is 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or
 | |
| *>          RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          ROWCOL
 | |
|       INTEGER            LDU, LWORK, M, N
 | |
|       REAL               RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               U( LDU, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          TRANSU
 | |
|       INTEGER            I, J, K, LDWORK, MNMIN
 | |
|       REAL               EPS, TMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SDOT, SLAMCH, SLANSY
 | |
|       EXTERNAL           LSAME, SDOT, SLAMCH, SLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLASET, SSYRK
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RESID = ZERO
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.LE.0 .OR. N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
|       IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN
 | |
|          TRANSU = 'N'
 | |
|          K = N
 | |
|       ELSE
 | |
|          TRANSU = 'T'
 | |
|          K = M
 | |
|       END IF
 | |
|       MNMIN = MIN( M, N )
 | |
| *
 | |
|       IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN
 | |
|          LDWORK = MNMIN
 | |
|       ELSE
 | |
|          LDWORK = 0
 | |
|       END IF
 | |
|       IF( LDWORK.GT.0 ) THEN
 | |
| *
 | |
| *        Compute I - U*U' or I - U'*U.
 | |
| *
 | |
|          CALL SLASET( 'Upper', MNMIN, MNMIN, ZERO, ONE, WORK, LDWORK )
 | |
|          CALL SSYRK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK,
 | |
|      $               LDWORK )
 | |
| *
 | |
| *        Compute norm( I - U*U' ) / ( K * EPS ) .
 | |
| *
 | |
|          RESID = SLANSY( '1', 'Upper', MNMIN, WORK, LDWORK,
 | |
|      $           WORK( LDWORK*MNMIN+1 ) )
 | |
|          RESID = ( RESID / REAL( K ) ) / EPS
 | |
|       ELSE IF( TRANSU.EQ.'T' ) THEN
 | |
| *
 | |
| *        Find the maximum element in abs( I - U'*U ) / ( m * EPS )
 | |
| *
 | |
|          DO 20 J = 1, N
 | |
|             DO 10 I = 1, J
 | |
|                IF( I.NE.J ) THEN
 | |
|                   TMP = ZERO
 | |
|                ELSE
 | |
|                   TMP = ONE
 | |
|                END IF
 | |
|                TMP = TMP - SDOT( M, U( 1, I ), 1, U( 1, J ), 1 )
 | |
|                RESID = MAX( RESID, ABS( TMP ) )
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|          RESID = ( RESID / REAL( M ) ) / EPS
 | |
|       ELSE
 | |
| *
 | |
| *        Find the maximum element in abs( I - U*U' ) / ( n * EPS )
 | |
| *
 | |
|          DO 40 J = 1, M
 | |
|             DO 30 I = 1, J
 | |
|                IF( I.NE.J ) THEN
 | |
|                   TMP = ZERO
 | |
|                ELSE
 | |
|                   TMP = ONE
 | |
|                END IF
 | |
|                TMP = TMP - SDOT( N, U( J, 1 ), LDU, U( I, 1 ), LDU )
 | |
|                RESID = MAX( RESID, ABS( TMP ) )
 | |
|    30       CONTINUE
 | |
|    40    CONTINUE
 | |
|          RESID = ( RESID / REAL( N ) ) / EPS
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORT01
 | |
| *
 | |
|       END
 |