354 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGEBRD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGEBRD + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgebrd.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgebrd.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgebrd.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
 | |
| *                          INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), D( * ), E( * ), TAUP( * ),
 | |
| *      $                   TAUQ( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGEBRD reduces a general real M-by-N matrix A to upper or lower
 | |
| *> bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
 | |
| *>
 | |
| *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows in the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns in the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N general matrix to be reduced.
 | |
| *>          On exit,
 | |
| *>          if m >= n, the diagonal and the first superdiagonal are
 | |
| *>            overwritten with the upper bidiagonal matrix B; the
 | |
| *>            elements below the diagonal, with the array TAUQ, represent
 | |
| *>            the orthogonal matrix Q as a product of elementary
 | |
| *>            reflectors, and the elements above the first superdiagonal,
 | |
| *>            with the array TAUP, represent the orthogonal matrix P as
 | |
| *>            a product of elementary reflectors;
 | |
| *>          if m < n, the diagonal and the first subdiagonal are
 | |
| *>            overwritten with the lower bidiagonal matrix B; the
 | |
| *>            elements below the first subdiagonal, with the array TAUQ,
 | |
| *>            represent the orthogonal matrix Q as a product of
 | |
| *>            elementary reflectors, and the elements above the diagonal,
 | |
| *>            with the array TAUP, represent the orthogonal matrix P as
 | |
| *>            a product of elementary reflectors.
 | |
| *>          See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (min(M,N))
 | |
| *>          The diagonal elements of the bidiagonal matrix B:
 | |
| *>          D(i) = A(i,i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (min(M,N)-1)
 | |
| *>          The off-diagonal elements of the bidiagonal matrix B:
 | |
| *>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
 | |
| *>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUQ
 | |
| *> \verbatim
 | |
| *>          TAUQ is REAL array dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors which
 | |
| *>          represent the orthogonal matrix Q. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUP
 | |
| *> \verbatim
 | |
| *>          TAUP is REAL array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors which
 | |
| *>          represent the orthogonal matrix P. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= max(1,M,N).
 | |
| *>          For optimum performance LWORK >= (M+N)*NB, where NB
 | |
| *>          is the optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit 
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup realGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrices Q and P are represented as products of elementary
 | |
| *>  reflectors:
 | |
| *>
 | |
| *>  If m >= n,
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
 | |
| *>
 | |
| *>  Each H(i) and G(i) has the form:
 | |
| *>
 | |
| *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
 | |
| *>
 | |
| *>  where tauq and taup are real scalars, and v and u are real vectors;
 | |
| *>  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
 | |
| *>  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
 | |
| *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
 | |
| *>
 | |
| *>  If m < n,
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
 | |
| *>
 | |
| *>  Each H(i) and G(i) has the form:
 | |
| *>
 | |
| *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
 | |
| *>
 | |
| *>  where tauq and taup are real scalars, and v and u are real vectors;
 | |
| *>  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
 | |
| *>  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
 | |
| *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
 | |
| *>
 | |
| *>  The contents of A on exit are illustrated by the following examples:
 | |
| *>
 | |
| *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
 | |
| *>
 | |
| *>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
 | |
| *>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
 | |
| *>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
 | |
| *>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
 | |
| *>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
 | |
| *>    (  v1  v2  v3  v4  v5 )
 | |
| *>
 | |
| *>  where d and e denote diagonal and off-diagonal elements of B, vi
 | |
| *>  denotes an element of the vector defining H(i), and ui an element of
 | |
| *>  the vector defining G(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), D( * ), E( * ), TAUP( * ),
 | |
|      $                   TAUQ( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
 | |
|      $                   NBMIN, NX
 | |
|       REAL               WS
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEBD2, SGEMM, SLABRD, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       NB = MAX( 1, ILAENV( 1, 'SGEBRD', ' ', M, N, -1, -1 ) )
 | |
|       LWKOPT = ( M+N )*NB
 | |
|       WORK( 1 ) = REAL( LWKOPT )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
|       IF( INFO.LT.0 ) THEN
 | |
|          CALL XERBLA( 'SGEBRD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       MINMN = MIN( M, N )
 | |
|       IF( MINMN.EQ.0 ) THEN
 | |
|          WORK( 1 ) = 1
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       WS = MAX( M, N )
 | |
|       LDWRKX = M
 | |
|       LDWRKY = N
 | |
| *
 | |
|       IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
 | |
| *
 | |
| *        Set the crossover point NX.
 | |
| *
 | |
|          NX = MAX( NB, ILAENV( 3, 'SGEBRD', ' ', M, N, -1, -1 ) )
 | |
| *
 | |
| *        Determine when to switch from blocked to unblocked code.
 | |
| *
 | |
|          IF( NX.LT.MINMN ) THEN
 | |
|             WS = ( M+N )*NB
 | |
|             IF( LWORK.LT.WS ) THEN
 | |
| *
 | |
| *              Not enough work space for the optimal NB, consider using
 | |
| *              a smaller block size.
 | |
| *
 | |
|                NBMIN = ILAENV( 2, 'SGEBRD', ' ', M, N, -1, -1 )
 | |
|                IF( LWORK.GE.( M+N )*NBMIN ) THEN
 | |
|                   NB = LWORK / ( M+N )
 | |
|                ELSE
 | |
|                   NB = 1
 | |
|                   NX = MINMN
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
|          NX = MINMN
 | |
|       END IF
 | |
| *
 | |
|       DO 30 I = 1, MINMN - NX, NB
 | |
| *
 | |
| *        Reduce rows and columns i:i+nb-1 to bidiagonal form and return
 | |
| *        the matrices X and Y which are needed to update the unreduced
 | |
| *        part of the matrix
 | |
| *
 | |
|          CALL SLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
 | |
|      $                TAUQ( I ), TAUP( I ), WORK, LDWRKX,
 | |
|      $                WORK( LDWRKX*NB+1 ), LDWRKY )
 | |
| *
 | |
| *        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update
 | |
| *        of the form  A := A - V*Y**T - X*U**T
 | |
| *
 | |
|          CALL SGEMM( 'No transpose', 'Transpose', M-I-NB+1, N-I-NB+1,
 | |
|      $               NB, -ONE, A( I+NB, I ), LDA,
 | |
|      $               WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
 | |
|      $               A( I+NB, I+NB ), LDA )
 | |
|          CALL SGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
 | |
|      $               NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
 | |
|      $               ONE, A( I+NB, I+NB ), LDA )
 | |
| *
 | |
| *        Copy diagonal and off-diagonal elements of B back into A
 | |
| *
 | |
|          IF( M.GE.N ) THEN
 | |
|             DO 10 J = I, I + NB - 1
 | |
|                A( J, J ) = D( J )
 | |
|                A( J, J+1 ) = E( J )
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
|             DO 20 J = I, I + NB - 1
 | |
|                A( J, J ) = D( J )
 | |
|                A( J+1, J ) = E( J )
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Use unblocked code to reduce the remainder of the matrix
 | |
| *
 | |
|       CALL SGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
 | |
|      $             TAUQ( I ), TAUP( I ), WORK, IINFO )
 | |
|       WORK( 1 ) = WS
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGEBRD
 | |
| *
 | |
|       END
 |