480 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			480 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DGELSY solves overdetermined or underdetermined systems for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGELSY + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsy.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsy.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsy.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 | |
| *                          WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | |
| *       DOUBLE PRECISION   RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            JPVT( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGELSY computes the minimum-norm solution to a real linear least
 | |
| *> squares problem:
 | |
| *>     minimize || A * X - B ||
 | |
| *> using a complete orthogonal factorization of A.  A is an M-by-N
 | |
| *> matrix which may be rank-deficient.
 | |
| *>
 | |
| *> Several right hand side vectors b and solution vectors x can be
 | |
| *> handled in a single call; they are stored as the columns of the
 | |
| *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | |
| *> matrix X.
 | |
| *>
 | |
| *> The routine first computes a QR factorization with column pivoting:
 | |
| *>     A * P = Q * [ R11 R12 ]
 | |
| *>                 [  0  R22 ]
 | |
| *> with R11 defined as the largest leading submatrix whose estimated
 | |
| *> condition number is less than 1/RCOND.  The order of R11, RANK,
 | |
| *> is the effective rank of A.
 | |
| *>
 | |
| *> Then, R22 is considered to be negligible, and R12 is annihilated
 | |
| *> by orthogonal transformations from the right, arriving at the
 | |
| *> complete orthogonal factorization:
 | |
| *>    A * P = Q * [ T11 0 ] * Z
 | |
| *>                [  0  0 ]
 | |
| *> The minimum-norm solution is then
 | |
| *>    X = P * Z**T [ inv(T11)*Q1**T*B ]
 | |
| *>                 [        0         ]
 | |
| *> where Q1 consists of the first RANK columns of Q.
 | |
| *>
 | |
| *> This routine is basically identical to the original xGELSX except
 | |
| *> three differences:
 | |
| *>   o The call to the subroutine xGEQPF has been substituted by the
 | |
| *>     the call to the subroutine xGEQP3. This subroutine is a Blas-3
 | |
| *>     version of the QR factorization with column pivoting.
 | |
| *>   o Matrix B (the right hand side) is updated with Blas-3.
 | |
| *>   o The permutation of matrix B (the right hand side) is faster and
 | |
| *>     more simple.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of
 | |
| *>          columns of matrices B and X. NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, A has been overwritten by details of its
 | |
| *>          complete orthogonal factorization.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          On entry, the M-by-NRHS right hand side matrix B.
 | |
| *>          On exit, the N-by-NRHS solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] JPVT
 | |
| *> \verbatim
 | |
| *>          JPVT is INTEGER array, dimension (N)
 | |
| *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
 | |
| *>          to the front of AP, otherwise column i is a free column.
 | |
| *>          On exit, if JPVT(i) = k, then the i-th column of AP
 | |
| *>          was the k-th column of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>          RCOND is used to determine the effective rank of A, which
 | |
| *>          is defined as the order of the largest leading triangular
 | |
| *>          submatrix R11 in the QR factorization with pivoting of A,
 | |
| *>          whose estimated condition number < 1/RCOND.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RANK
 | |
| *> \verbatim
 | |
| *>          RANK is INTEGER
 | |
| *>          The effective rank of A, i.e., the order of the submatrix
 | |
| *>          R11.  This is the same as the order of the submatrix T11
 | |
| *>          in the complete orthogonal factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          The unblocked strategy requires that:
 | |
| *>             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
 | |
| *>          where MN = min( M, N ).
 | |
| *>          The block algorithm requires that:
 | |
| *>             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
 | |
| *>          where NB is an upper bound on the blocksize returned
 | |
| *>          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
 | |
| *>          and DORMRZ.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: If INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup doubleGEsolve
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n 
 | |
| *>    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
 | |
| *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 | |
|      $                   WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | |
|       DOUBLE PRECISION   RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            JPVT( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            IMAX, IMIN
 | |
|       PARAMETER          ( IMAX = 1, IMIN = 2 )
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
 | |
|      $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4
 | |
|       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
 | |
|      $                   SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE
 | |
|       EXTERNAL           ILAENV, DLAMCH, DLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
 | |
|      $                   DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       MN = MIN( M, N )
 | |
|       ISMIN = MN + 1
 | |
|       ISMAX = 2*MN + 1
 | |
| *
 | |
| *     Test the input arguments.
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
| *     Figure out optimal block size
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | |
|             LWKMIN = 1
 | |
|             LWKOPT = 1
 | |
|          ELSE
 | |
|             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
 | |
|             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
 | |
|             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
 | |
|             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
 | |
|             NB = MAX( NB1, NB2, NB3, NB4 )
 | |
|             LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
 | |
|             LWKOPT = MAX( LWKMIN,
 | |
|      $                    MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
 | |
|          END IF
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -12
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGELSY', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | |
|          RANK = 0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine parameters
 | |
| *
 | |
|       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
 | |
|       IASCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 1
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 2
 | |
|       ELSE IF( ANRM.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Matrix all zero. Return zero solution.
 | |
| *
 | |
|          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | |
|          RANK = 0
 | |
|          GO TO 70
 | |
|       END IF
 | |
| *
 | |
|       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
 | |
|       IBSCL = 0
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | |
|          IBSCL = 1
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | |
|          IBSCL = 2
 | |
|       END IF
 | |
| *
 | |
| *     Compute QR factorization with column pivoting of A:
 | |
| *        A * P = Q * R
 | |
| *
 | |
|       CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
 | |
|      $             LWORK-MN, INFO )
 | |
|       WSIZE = MN + WORK( MN+1 )
 | |
| *
 | |
| *     workspace: MN+2*N+NB*(N+1).
 | |
| *     Details of Householder rotations stored in WORK(1:MN).
 | |
| *
 | |
| *     Determine RANK using incremental condition estimation
 | |
| *
 | |
|       WORK( ISMIN ) = ONE
 | |
|       WORK( ISMAX ) = ONE
 | |
|       SMAX = ABS( A( 1, 1 ) )
 | |
|       SMIN = SMAX
 | |
|       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
 | |
|          RANK = 0
 | |
|          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | |
|          GO TO 70
 | |
|       ELSE
 | |
|          RANK = 1
 | |
|       END IF
 | |
| *
 | |
|    10 CONTINUE
 | |
|       IF( RANK.LT.MN ) THEN
 | |
|          I = RANK + 1
 | |
|          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
 | |
|      $                A( I, I ), SMINPR, S1, C1 )
 | |
|          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
 | |
|      $                A( I, I ), SMAXPR, S2, C2 )
 | |
| *
 | |
|          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
 | |
|             DO 20 I = 1, RANK
 | |
|                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
 | |
|                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
 | |
|    20       CONTINUE
 | |
|             WORK( ISMIN+RANK ) = C1
 | |
|             WORK( ISMAX+RANK ) = C2
 | |
|             SMIN = SMINPR
 | |
|             SMAX = SMAXPR
 | |
|             RANK = RANK + 1
 | |
|             GO TO 10
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     workspace: 3*MN.
 | |
| *
 | |
| *     Logically partition R = [ R11 R12 ]
 | |
| *                             [  0  R22 ]
 | |
| *     where R11 = R(1:RANK,1:RANK)
 | |
| *
 | |
| *     [R11,R12] = [ T11, 0 ] * Y
 | |
| *
 | |
|       IF( RANK.LT.N )
 | |
|      $   CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
 | |
|      $                LWORK-2*MN, INFO )
 | |
| *
 | |
| *     workspace: 2*MN.
 | |
| *     Details of Householder rotations stored in WORK(MN+1:2*MN)
 | |
| *
 | |
| *     B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
 | |
| *
 | |
|       CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
 | |
|      $             B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
 | |
|       WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
 | |
| *
 | |
| *     workspace: 2*MN+NB*NRHS.
 | |
| *
 | |
| *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
 | |
| *
 | |
|       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
 | |
|      $            NRHS, ONE, A, LDA, B, LDB )
 | |
| *
 | |
|       DO 40 J = 1, NRHS
 | |
|          DO 30 I = RANK + 1, N
 | |
|             B( I, J ) = ZERO
 | |
|    30    CONTINUE
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
 | |
| *
 | |
|       IF( RANK.LT.N ) THEN
 | |
|          CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
 | |
|      $                LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
 | |
|      $                LWORK-2*MN, INFO )
 | |
|       END IF
 | |
| *
 | |
| *     workspace: 2*MN+NRHS.
 | |
| *
 | |
| *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
 | |
| *
 | |
|       DO 60 J = 1, NRHS
 | |
|          DO 50 I = 1, N
 | |
|             WORK( JPVT( I ) ) = B( I, J )
 | |
|    50    CONTINUE
 | |
|          CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
 | |
|    60 CONTINUE
 | |
| *
 | |
| *     workspace: N.
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( IASCL.EQ.1 ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | |
|          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
 | |
|      $                INFO )
 | |
|       ELSE IF( IASCL.EQ.2 ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | |
|          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
 | |
|      $                INFO )
 | |
|       END IF
 | |
|       IF( IBSCL.EQ.1 ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | |
|       ELSE IF( IBSCL.EQ.2 ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | |
|       END IF
 | |
| *
 | |
|    70 CONTINUE
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGELSY
 | |
| *
 | |
|       END
 |