218 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE CHPRF ( UPLO, N, ALPHA, X, INCX, AP )
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL               ALPHA
 | 
						|
      INTEGER            INCX, N
 | 
						|
      CHARACTER*1        UPLO
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            AP( * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  CHPR    performs the hermitian rank 1 operation
 | 
						|
*
 | 
						|
*     A := alpha*x*conjg( x' ) + A,
 | 
						|
*
 | 
						|
*  where alpha is a real scalar, x is an n element vector and A is an
 | 
						|
*  n by n hermitian matrix, supplied in packed form.
 | 
						|
*
 | 
						|
*  Parameters
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*  UPLO   - CHARACTER*1.
 | 
						|
*           On entry, UPLO specifies whether the upper or lower
 | 
						|
*           triangular part of the matrix A is supplied in the packed
 | 
						|
*           array AP as follows:
 | 
						|
*
 | 
						|
*              UPLO = 'U' or 'u'   The upper triangular part of A is
 | 
						|
*                                  supplied in AP.
 | 
						|
*
 | 
						|
*              UPLO = 'L' or 'l'   The lower triangular part of A is
 | 
						|
*                                  supplied in AP.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  N      - INTEGER.
 | 
						|
*           On entry, N specifies the order of the matrix A.
 | 
						|
*           N must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  ALPHA  - REAL            .
 | 
						|
*           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  X      - COMPLEX          array of dimension at least
 | 
						|
*           ( 1 + ( n - 1 )*abs( INCX ) ).
 | 
						|
*           Before entry, the incremented array X must contain the n
 | 
						|
*           element vector x.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  INCX   - INTEGER.
 | 
						|
*           On entry, INCX specifies the increment for the elements of
 | 
						|
*           X. INCX must not be zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  AP     - COMPLEX          array of DIMENSION at least
 | 
						|
*           ( ( n*( n + 1 ) )/2 ).
 | 
						|
*           Before entry with  UPLO = 'U' or 'u', the array AP must
 | 
						|
*           contain the upper triangular part of the hermitian matrix
 | 
						|
*           packed sequentially, column by column, so that AP( 1 )
 | 
						|
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 | 
						|
*           and a( 2, 2 ) respectively, and so on. On exit, the array
 | 
						|
*           AP is overwritten by the upper triangular part of the
 | 
						|
*           updated matrix.
 | 
						|
*           Before entry with UPLO = 'L' or 'l', the array AP must
 | 
						|
*           contain the lower triangular part of the hermitian matrix
 | 
						|
*           packed sequentially, column by column, so that AP( 1 )
 | 
						|
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 | 
						|
*           and a( 3, 1 ) respectively, and so on. On exit, the array
 | 
						|
*           AP is overwritten by the lower triangular part of the
 | 
						|
*           updated matrix.
 | 
						|
*           Note that the imaginary parts of the diagonal elements need
 | 
						|
*           not be set, they are assumed to be zero, and on exit they
 | 
						|
*           are set to zero.
 | 
						|
*
 | 
						|
*
 | 
						|
*  Level 2 Blas routine.
 | 
						|
*
 | 
						|
*  -- Written on 22-October-1986.
 | 
						|
*     Jack Dongarra, Argonne National Lab.
 | 
						|
*     Jeremy Du Croz, Nag Central Office.
 | 
						|
*     Sven Hammarling, Nag Central Office.
 | 
						|
*     Richard Hanson, Sandia National Labs.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ZERO
 | 
						|
      PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX            TEMP
 | 
						|
      INTEGER            I, INFO, IX, J, JX, K, KK, KX
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
 | 
						|
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( N.LT.0 )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( INCX.EQ.0 )THEN
 | 
						|
         INFO = 5
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'CHPR  ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( N.EQ.0 ).OR.( ALPHA.EQ.REAL( ZERO ) ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set the start point in X if the increment is not unity.
 | 
						|
*
 | 
						|
      IF( INCX.LE.0 )THEN
 | 
						|
         KX = 1 - ( N - 1 )*INCX
 | 
						|
      ELSE IF( INCX.NE.1 )THEN
 | 
						|
         KX = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of the array AP
 | 
						|
*     are accessed sequentially with one pass through AP.
 | 
						|
*
 | 
						|
      KK = 1
 | 
						|
      IF( LSAME( UPLO, 'U' ) )THEN
 | 
						|
*
 | 
						|
*        Form  A  when upper triangle is stored in AP.
 | 
						|
*
 | 
						|
         IF( INCX.EQ.1 )THEN
 | 
						|
            DO 20, J = 1, N
 | 
						|
               IF( X( J ).NE.ZERO )THEN
 | 
						|
                  TEMP = ALPHA*CONJG( X( J ) )
 | 
						|
                  K    = KK
 | 
						|
                  DO 10, I = 1, J - 1
 | 
						|
                     AP( K ) = AP( K ) + X( I )*TEMP
 | 
						|
                     K       = K       + 1
 | 
						|
   10             CONTINUE
 | 
						|
                  AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
 | 
						|
     $                               + REAL( X( J )*TEMP )
 | 
						|
               ELSE
 | 
						|
                  AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
 | 
						|
               END IF
 | 
						|
               KK = KK + J
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            DO 40, J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO )THEN
 | 
						|
                  TEMP = ALPHA*CONJG( X( JX ) )
 | 
						|
                  IX   = KX
 | 
						|
                  DO 30, K = KK, KK + J - 2
 | 
						|
                     AP( K ) = AP( K ) + X( IX )*TEMP
 | 
						|
                     IX      = IX      + INCX
 | 
						|
   30             CONTINUE
 | 
						|
                  AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
 | 
						|
     $                               + REAL( X( JX )*TEMP )
 | 
						|
               ELSE
 | 
						|
                  AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
               KK = KK + J
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  A  when lower triangle is stored in AP.
 | 
						|
*
 | 
						|
         IF( INCX.EQ.1 )THEN
 | 
						|
            DO 60, J = 1, N
 | 
						|
               IF( X( J ).NE.ZERO )THEN
 | 
						|
                  TEMP     = ALPHA*CONJG( X( J ) )
 | 
						|
                  AP( KK ) = REAL( AP( KK ) ) + REAL( TEMP*X( J ) )
 | 
						|
                  K        = KK               + 1
 | 
						|
                  DO 50, I = J + 1, N
 | 
						|
                     AP( K ) = AP( K ) + X( I )*TEMP
 | 
						|
                     K       = K       + 1
 | 
						|
   50             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  AP( KK ) = REAL( AP( KK ) )
 | 
						|
               END IF
 | 
						|
               KK = KK + N - J + 1
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            DO 80, J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO )THEN
 | 
						|
                  TEMP    = ALPHA*CONJG( X( JX ) )
 | 
						|
                  AP( KK ) = REAL( AP( KK ) ) + REAL( TEMP*X( JX ) )
 | 
						|
                  IX      = JX
 | 
						|
                  DO 70, K = KK + 1, KK + N - J
 | 
						|
                     IX      = IX      + INCX
 | 
						|
                     AP( K ) = AP( K ) + X( IX )*TEMP
 | 
						|
   70             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  AP( KK ) = REAL( AP( KK ) )
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
               KK = KK + N - J + 1
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHPR  .
 | 
						|
*
 | 
						|
      END
 |