263 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE DSYMVF ( UPLO, N, ALPHA, A, LDA, X, INCX,
 | |
|      $                   BETA, Y, INCY )
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   ALPHA, BETA
 | |
|       INTEGER            INCX, INCY, LDA, N
 | |
|       CHARACTER*1        UPLO
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  DSYMV  performs the matrix-vector  operation
 | |
| *
 | |
| *     y := alpha*A*x + beta*y,
 | |
| *
 | |
| *  where alpha and beta are scalars, x and y are n element vectors and
 | |
| *  A is an n by n symmetric matrix.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On entry, UPLO specifies whether the upper or lower
 | |
| *           triangular part of the array A is to be referenced as
 | |
| *           follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the order of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - DOUBLE PRECISION.
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
 | |
| *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | |
| *           upper triangular part of the array A must contain the upper
 | |
| *           triangular part of the symmetric matrix and the strictly
 | |
| *           lower triangular part of A is not referenced.
 | |
| *           Before entry with UPLO = 'L' or 'l', the leading n by n
 | |
| *           lower triangular part of the array A must contain the lower
 | |
| *           triangular part of the symmetric matrix and the strictly
 | |
| *           upper triangular part of A is not referenced.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program. LDA must be at least
 | |
| *           max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - DOUBLE PRECISION array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *           Before entry, the incremented array X must contain the n
 | |
| *           element vector x.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - DOUBLE PRECISION.
 | |
| *           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *           supplied as zero then Y need not be set on input.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  Y      - DOUBLE PRECISION array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCY ) ).
 | |
| *           Before entry, the incremented array Y must contain the n
 | |
| *           element vector y. On exit, Y is overwritten by the updated
 | |
| *           vector y.
 | |
| *
 | |
| *  INCY   - INTEGER.
 | |
| *           On entry, INCY specifies the increment for the elements of
 | |
| *           Y. INCY must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE         , ZERO
 | |
|       PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   TEMP1, TEMP2
 | |
|       INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
 | |
|      $         .NOT.LSAME( UPLO, 'L' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) )THEN
 | |
|          INFO = 5
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 7
 | |
|       ELSE IF( INCY.EQ.0 )THEN
 | |
|          INFO = 10
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'DSYMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set up the start points in  X  and  Y.
 | |
| *
 | |
|       IF( INCX.GT.0 )THEN
 | |
|          KX = 1
 | |
|       ELSE
 | |
|          KX = 1 - ( N - 1 )*INCX
 | |
|       END IF
 | |
|       IF( INCY.GT.0 )THEN
 | |
|          KY = 1
 | |
|       ELSE
 | |
|          KY = 1 - ( N - 1 )*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through the triangular part
 | |
| *     of A.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF( BETA.NE.ONE )THEN
 | |
|          IF( INCY.EQ.1 )THEN
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 10, I = 1, N
 | |
|                   Y( I ) = ZERO
 | |
|    10          CONTINUE
 | |
|             ELSE
 | |
|                DO 20, I = 1, N
 | |
|                   Y( I ) = BETA*Y( I )
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IY = KY
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 30, I = 1, N
 | |
|                   Y( IY ) = ZERO
 | |
|                   IY      = IY   + INCY
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
|                DO 40, I = 1, N
 | |
|                   Y( IY ) = BETA*Y( IY )
 | |
|                   IY      = IY           + INCY
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ALPHA.EQ.ZERO )
 | |
|      $   RETURN
 | |
|       IF( LSAME( UPLO, 'U' ) )THEN
 | |
| *
 | |
| *        Form  y  when A is stored in upper triangle.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
 | |
|             DO 60, J = 1, N
 | |
|                TEMP1 = ALPHA*X( J )
 | |
|                TEMP2 = ZERO
 | |
|                DO 50, I = 1, J - 1
 | |
|                   Y( I ) = Y( I ) + TEMP1*A( I, J )
 | |
|                   TEMP2  = TEMP2  + A( I, J )*X( I )
 | |
|    50          CONTINUE
 | |
|                Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             JX = KX
 | |
|             JY = KY
 | |
|             DO 80, J = 1, N
 | |
|                TEMP1 = ALPHA*X( JX )
 | |
|                TEMP2 = ZERO
 | |
|                IX    = KX
 | |
|                IY    = KY
 | |
|                DO 70, I = 1, J - 1
 | |
|                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
 | |
|                   TEMP2   = TEMP2   + A( I, J )*X( IX )
 | |
|                   IX      = IX      + INCX
 | |
|                   IY      = IY      + INCY
 | |
|    70          CONTINUE
 | |
|                Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
 | |
|                JX      = JX      + INCX
 | |
|                JY      = JY      + INCY
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y  when A is stored in lower triangle.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
 | |
|             DO 100, J = 1, N
 | |
|                TEMP1  = ALPHA*X( J )
 | |
|                TEMP2  = ZERO
 | |
|                Y( J ) = Y( J )       + TEMP1*A( J, J )
 | |
|                DO 90, I = J + 1, N
 | |
|                   Y( I ) = Y( I ) + TEMP1*A( I, J )
 | |
|                   TEMP2  = TEMP2  + A( I, J )*X( I )
 | |
|    90          CONTINUE
 | |
|                Y( J ) = Y( J ) + ALPHA*TEMP2
 | |
|   100       CONTINUE
 | |
|          ELSE
 | |
|             JX = KX
 | |
|             JY = KY
 | |
|             DO 120, J = 1, N
 | |
|                TEMP1   = ALPHA*X( JX )
 | |
|                TEMP2   = ZERO
 | |
|                Y( JY ) = Y( JY )       + TEMP1*A( J, J )
 | |
|                IX      = JX
 | |
|                IY      = JY
 | |
|                DO 110, I = J + 1, N
 | |
|                   IX      = IX      + INCX
 | |
|                   IY      = IY      + INCY
 | |
|                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
 | |
|                   TEMP2   = TEMP2   + A( I, J )*X( IX )
 | |
|   110          CONTINUE
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP2
 | |
|                JX      = JX      + INCX
 | |
|                JY      = JY      + INCY
 | |
|   120       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSYMV .
 | |
| *
 | |
|       END
 |