355 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSYEVD + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
 | 
						|
*                          LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, UPLO
 | 
						|
*       INTEGER            INFO, LDA, LIWORK, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
 | 
						|
*> real symmetric matrix A. If eigenvectors are desired, it uses a
 | 
						|
*> divide and conquer algorithm.
 | 
						|
*>
 | 
						|
*> The divide and conquer algorithm makes very mild assumptions about
 | 
						|
*> floating point arithmetic. It will work on machines with a guard
 | 
						|
*> digit in add/subtract, or on those binary machines without guard
 | 
						|
*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 | 
						|
*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
 | 
						|
*> without guard digits, but we know of none.
 | 
						|
*>
 | 
						|
*> Because of large use of BLAS of level 3, DSYEVD needs N**2 more
 | 
						|
*> workspace than DSYEVX.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
 | 
						|
*>          On entry, the symmetric matrix A.  If UPLO = 'U', the
 | 
						|
*>          leading N-by-N upper triangular part of A contains the
 | 
						|
*>          upper triangular part of the matrix A.  If UPLO = 'L',
 | 
						|
*>          the leading N-by-N lower triangular part of A contains
 | 
						|
*>          the lower triangular part of the matrix A.
 | 
						|
*>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 | 
						|
*>          orthonormal eigenvectors of the matrix A.
 | 
						|
*>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
 | 
						|
*>          or the upper triangle (if UPLO='U') of A, including the
 | 
						|
*>          diagonal, is destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          If INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array,
 | 
						|
*>                                         dimension (LWORK)
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If N <= 1,               LWORK must be at least 1.
 | 
						|
*>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
 | 
						|
*>          If JOBZ = 'V' and N > 1, LWORK must be at least
 | 
						|
*>                                                1 + 6*N + 2*N**2.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal sizes of the WORK and IWORK
 | 
						|
*>          arrays, returns these values as the first entries of the WORK
 | 
						|
*>          and IWORK arrays, and no error message related to LWORK or
 | 
						|
*>          LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK.
 | 
						|
*>          If N <= 1,                LIWORK must be at least 1.
 | 
						|
*>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
 | 
						|
*>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
 | 
						|
*>
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the optimal sizes of the WORK and
 | 
						|
*>          IWORK arrays, returns these values as the first entries of
 | 
						|
*>          the WORK and IWORK arrays, and no error message related to
 | 
						|
*>          LWORK or LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
 | 
						|
*>                to converge; i off-diagonal elements of an intermediate
 | 
						|
*>                tridiagonal form did not converge to zero;
 | 
						|
*>                if INFO = i and JOBZ = 'V', then the algorithm failed
 | 
						|
*>                to compute an eigenvalue while working on the submatrix
 | 
						|
*>                lying in rows and columns INFO/(N+1) through
 | 
						|
*>                mod(INFO,N+1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleSYeigen
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Jeff Rutter, Computer Science Division, University of California
 | 
						|
*> at Berkeley, USA \n
 | 
						|
*>  Modified by Francoise Tisseur, University of Tennessee \n
 | 
						|
*>  Modified description of INFO. Sven, 16 Feb 05. \n
 | 
						|
 | 
						|
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
 | 
						|
     $                   LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, UPLO
 | 
						|
      INTEGER            INFO, LDA, LIWORK, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
*
 | 
						|
      LOGICAL            LOWER, LQUERY, WANTZ
 | 
						|
      INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
 | 
						|
     $                   LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
 | 
						|
      DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 | 
						|
     $                   SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANSY
 | 
						|
      EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF,
 | 
						|
     $                   DSYTRD, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      LOWER = LSAME( UPLO, 'L' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( N.LE.1 ) THEN
 | 
						|
            LIWMIN = 1
 | 
						|
            LWMIN = 1
 | 
						|
            LOPT = LWMIN
 | 
						|
            LIOPT = LIWMIN
 | 
						|
         ELSE
 | 
						|
            IF( WANTZ ) THEN
 | 
						|
               LIWMIN = 3 + 5*N
 | 
						|
               LWMIN = 1 + 6*N + 2*N**2
 | 
						|
            ELSE
 | 
						|
               LIWMIN = 1
 | 
						|
               LWMIN = 2*N + 1
 | 
						|
            END IF
 | 
						|
            LOPT = MAX( LWMIN, 2*N +
 | 
						|
     $                  N*ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
 | 
						|
            LIOPT = LIWMIN
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LOPT
 | 
						|
         IWORK( 1 ) = LIOPT
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -8
 | 
						|
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSYEVD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         W( 1 ) = A( 1, 1 )
 | 
						|
         IF( WANTZ )
 | 
						|
     $      A( 1, 1 ) = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants.
 | 
						|
*
 | 
						|
      SAFMIN = DLAMCH( 'Safe minimum' )
 | 
						|
      EPS = DLAMCH( 'Precision' )
 | 
						|
      SMLNUM = SAFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      RMIN = SQRT( SMLNUM )
 | 
						|
      RMAX = SQRT( BIGNUM )
 | 
						|
*
 | 
						|
*     Scale matrix to allowable range, if necessary.
 | 
						|
*
 | 
						|
      ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
 | 
						|
      ISCALE = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMIN / ANRM
 | 
						|
      ELSE IF( ANRM.GT.RMAX ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMAX / ANRM
 | 
						|
      END IF
 | 
						|
      IF( ISCALE.EQ.1 )
 | 
						|
     $   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
 | 
						|
*
 | 
						|
      INDE = 1
 | 
						|
      INDTAU = INDE + N
 | 
						|
      INDWRK = INDTAU + N
 | 
						|
      LLWORK = LWORK - INDWRK + 1
 | 
						|
      INDWK2 = INDWRK + N*N
 | 
						|
      LLWRK2 = LWORK - INDWK2 + 1
 | 
						|
*
 | 
						|
      CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
 | 
						|
     $             WORK( INDWRK ), LLWORK, IINFO )
 | 
						|
*
 | 
						|
*     For eigenvalues only, call DSTERF.  For eigenvectors, first call
 | 
						|
*     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
 | 
						|
*     tridiagonal matrix, then call DORMTR to multiply it by the
 | 
						|
*     Householder transformations stored in A.
 | 
						|
*
 | 
						|
      IF( .NOT.WANTZ ) THEN
 | 
						|
         CALL DSTERF( N, W, WORK( INDE ), INFO )
 | 
						|
      ELSE
 | 
						|
         CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
 | 
						|
     $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
 | 
						|
         CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
 | 
						|
     $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
 | 
						|
         CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If matrix was scaled, then rescale eigenvalues appropriately.
 | 
						|
*
 | 
						|
      IF( ISCALE.EQ.1 )
 | 
						|
     $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
 | 
						|
*
 | 
						|
      WORK( 1 ) = LOPT
 | 
						|
      IWORK( 1 ) = LIOPT
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSYEVD
 | 
						|
*
 | 
						|
      END
 |