1422 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1422 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
static integer c__3 = 3;
 | 
						|
static integer c__2 = 2;
 | 
						|
static integer c__0 = 0;
 | 
						|
 | 
						|
/* > \brief \b DLARRD computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy. */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download DLARRD + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrd.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrd.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrd.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE DLARRD( RANGE, ORDER, N, VL, VU, IL, IU, GERS, */
 | 
						|
/*                           RELTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT, */
 | 
						|
/*                           M, W, WERR, WL, WU, IBLOCK, INDEXW, */
 | 
						|
/*                           WORK, IWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          ORDER, RANGE */
 | 
						|
/*       INTEGER            IL, INFO, IU, M, N, NSPLIT */
 | 
						|
/*       DOUBLE PRECISION    PIVMIN, RELTOL, VL, VU, WL, WU */
 | 
						|
/*       INTEGER            IBLOCK( * ), INDEXW( * ), */
 | 
						|
/*      $                   ISPLIT( * ), IWORK( * ) */
 | 
						|
/*       DOUBLE PRECISION   D( * ), E( * ), E2( * ), */
 | 
						|
/*      $                   GERS( * ), W( * ), WERR( * ), WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > DLARRD computes the eigenvalues of a symmetric tridiagonal */
 | 
						|
/* > matrix T to suitable accuracy. This is an auxiliary code to be */
 | 
						|
/* > called from DSTEMR. */
 | 
						|
/* > The user may ask for all eigenvalues, all eigenvalues */
 | 
						|
/* > in the half-open interval (VL, VU], or the IL-th through IU-th */
 | 
						|
/* > eigenvalues. */
 | 
						|
/* > */
 | 
						|
/* > To avoid overflow, the matrix must be scaled so that its */
 | 
						|
/* > largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
 | 
						|
 */
 | 
						|
/* > accuracy, it should not be much smaller than that. */
 | 
						|
/* > */
 | 
						|
/* > See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
 | 
						|
/* > Matrix", Report CS41, Computer Science Dept., Stanford */
 | 
						|
/* > University, July 21, 1966. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] RANGE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RANGE is CHARACTER*1 */
 | 
						|
/* >          = 'A': ("All")   all eigenvalues will be found. */
 | 
						|
/* >          = 'V': ("Value") all eigenvalues in the half-open interval */
 | 
						|
/* >                           (VL, VU] will be found. */
 | 
						|
/* >          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
 | 
						|
/* >                           entire matrix) will be found. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] ORDER */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ORDER is CHARACTER*1 */
 | 
						|
/* >          = 'B': ("By Block") the eigenvalues will be grouped by */
 | 
						|
/* >                              split-off block (see IBLOCK, ISPLIT) and */
 | 
						|
/* >                              ordered from smallest to largest within */
 | 
						|
/* >                              the block. */
 | 
						|
/* >          = 'E': ("Entire matrix") */
 | 
						|
/* >                              the eigenvalues for the entire matrix */
 | 
						|
/* >                              will be ordered from smallest to */
 | 
						|
/* >                              largest. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the tridiagonal matrix T.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is DOUBLE PRECISION */
 | 
						|
/* >          If RANGE='V', the lower bound of the interval to */
 | 
						|
/* >          be searched for eigenvalues.  Eigenvalues less than or equal */
 | 
						|
/* >          to VL, or greater than VU, will not be returned.  VL < VU. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'I'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] VU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VU is DOUBLE PRECISION */
 | 
						|
/* >          If RANGE='V', the upper bound of the interval to */
 | 
						|
/* >          be searched for eigenvalues.  Eigenvalues less than or equal */
 | 
						|
/* >          to VL, or greater than VU, will not be returned.  VL < VU. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'I'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IL is INTEGER */
 | 
						|
/* >          If RANGE='I', the index of the */
 | 
						|
/* >          smallest eigenvalue to be returned. */
 | 
						|
/* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'V'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IU is INTEGER */
 | 
						|
/* >          If RANGE='I', the index of the */
 | 
						|
/* >          largest eigenvalue to be returned. */
 | 
						|
/* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'V'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] GERS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          GERS is DOUBLE PRECISION array, dimension (2*N) */
 | 
						|
/* >          The N Gerschgorin intervals (the i-th Gerschgorin interval */
 | 
						|
/* >          is (GERS(2*i-1), GERS(2*i)). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] RELTOL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RELTOL is DOUBLE PRECISION */
 | 
						|
/* >          The minimum relative width of an interval.  When an interval */
 | 
						|
/* >          is narrower than RELTOL times the larger (in */
 | 
						|
/* >          magnitude) endpoint, then it is considered to be */
 | 
						|
/* >          sufficiently small, i.e., converged.  Note: this should */
 | 
						|
/* >          always be at least radix*machine epsilon. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          The n diagonal elements of the tridiagonal matrix T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] E */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          E is DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/* >          The (n-1) off-diagonal elements of the tridiagonal matrix T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] E2 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          E2 is DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/* >          The (n-1) squared off-diagonal elements of the tridiagonal matrix T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] PIVMIN */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          PIVMIN is DOUBLE PRECISION */
 | 
						|
/* >          The minimum pivot allowed in the Sturm sequence for T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NSPLIT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NSPLIT is INTEGER */
 | 
						|
/* >          The number of diagonal blocks in the matrix T. */
 | 
						|
/* >          1 <= NSPLIT <= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] ISPLIT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ISPLIT is INTEGER array, dimension (N) */
 | 
						|
/* >          The splitting points, at which T breaks up into submatrices. */
 | 
						|
/* >          The first submatrix consists of rows/columns 1 to ISPLIT(1), */
 | 
						|
/* >          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
 | 
						|
/* >          etc., and the NSPLIT-th consists of rows/columns */
 | 
						|
/* >          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
 | 
						|
/* >          (Only the first NSPLIT elements will actually be used, but */
 | 
						|
/* >          since the user cannot know a priori what value NSPLIT will */
 | 
						|
/* >          have, N words must be reserved for ISPLIT.) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The actual number of eigenvalues found. 0 <= M <= N. */
 | 
						|
/* >          (See also the description of INFO=2,3.) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] W */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          W is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          On exit, the first M elements of W will contain the */
 | 
						|
/* >          eigenvalue approximations. DLARRD computes an interval */
 | 
						|
/* >          I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue */
 | 
						|
/* >          approximation is given as the interval midpoint */
 | 
						|
/* >          W(j)= ( a_j + b_j)/2. The corresponding error is bounded by */
 | 
						|
/* >          WERR(j) = abs( a_j - b_j)/2 */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WERR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WERR is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          The error bound on the corresponding eigenvalue approximation */
 | 
						|
/* >          in W. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WL is DOUBLE PRECISION */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WU is DOUBLE PRECISION */
 | 
						|
/* >          The interval (WL, WU] contains all the wanted eigenvalues. */
 | 
						|
/* >          If RANGE='V', then WL=VL and WU=VU. */
 | 
						|
/* >          If RANGE='A', then WL and WU are the global Gerschgorin bounds */
 | 
						|
/* >                        on the spectrum. */
 | 
						|
/* >          If RANGE='I', then WL and WU are computed by DLAEBZ from the */
 | 
						|
/* >                        index range specified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IBLOCK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IBLOCK is INTEGER array, dimension (N) */
 | 
						|
/* >          At each row/column j where E(j) is zero or small, the */
 | 
						|
/* >          matrix T is considered to split into a block diagonal */
 | 
						|
/* >          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which */
 | 
						|
/* >          block (from 1 to the number of blocks) the eigenvalue W(i) */
 | 
						|
/* >          belongs.  (DLARRD may use the remaining N-M elements as */
 | 
						|
/* >          workspace.) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INDEXW */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INDEXW is INTEGER array, dimension (N) */
 | 
						|
/* >          The indices of the eigenvalues within each block (submatrix); */
 | 
						|
/* >          for example, INDEXW(i)= j and IBLOCK(i)=k imply that the */
 | 
						|
/* >          i-th eigenvalue W(i) is the j-th eigenvalue in block k. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is DOUBLE PRECISION array, dimension (4*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (3*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0:  some or all of the eigenvalues failed to converge or */
 | 
						|
/* >                were not computed: */
 | 
						|
/* >                =1 or 3: Bisection failed to converge for some */
 | 
						|
/* >                        eigenvalues; these eigenvalues are flagged by a */
 | 
						|
/* >                        negative block number.  The effect is that the */
 | 
						|
/* >                        eigenvalues may not be as accurate as the */
 | 
						|
/* >                        absolute and relative tolerances.  This is */
 | 
						|
/* >                        generally caused by unexpectedly inaccurate */
 | 
						|
/* >                        arithmetic. */
 | 
						|
/* >                =2 or 3: RANGE='I' only: Not all of the eigenvalues */
 | 
						|
/* >                        IL:IU were found. */
 | 
						|
/* >                        Effect: M < IU+1-IL */
 | 
						|
/* >                        Cause:  non-monotonic arithmetic, causing the */
 | 
						|
/* >                                Sturm sequence to be non-monotonic. */
 | 
						|
/* >                        Cure:   recalculate, using RANGE='A', and pick */
 | 
						|
/* >                                out eigenvalues IL:IU.  In some cases, */
 | 
						|
/* >                                increasing the PARAMETER "FUDGE" may */
 | 
						|
/* >                                make things work. */
 | 
						|
/* >                = 4:    RANGE='I', and the Gershgorin interval */
 | 
						|
/* >                        initially used was too small.  No eigenvalues */
 | 
						|
/* >                        were computed. */
 | 
						|
/* >                        Probable cause: your machine has sloppy */
 | 
						|
/* >                                        floating-point arithmetic. */
 | 
						|
/* >                        Cure: Increase the PARAMETER "FUDGE", */
 | 
						|
/* >                              recompile, and try again. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par Internal Parameters: */
 | 
						|
/*  ========================= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* >  FUDGE   DOUBLE PRECISION, default = 2 */
 | 
						|
/* >          A "fudge factor" to widen the Gershgorin intervals.  Ideally, */
 | 
						|
/* >          a value of 1 should work, but on machines with sloppy */
 | 
						|
/* >          arithmetic, this needs to be larger.  The default for */
 | 
						|
/* >          publicly released versions should be large enough to handle */
 | 
						|
/* >          the worst machine around.  Note that this has no effect */
 | 
						|
/* >          on accuracy of the solution. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* >     W. Kahan, University of California, Berkeley, USA \n */
 | 
						|
/* >     Beresford Parlett, University of California, Berkeley, USA \n */
 | 
						|
/* >     Jim Demmel, University of California, Berkeley, USA \n */
 | 
						|
/* >     Inderjit Dhillon, University of Texas, Austin, USA \n */
 | 
						|
/* >     Osni Marques, LBNL/NERSC, USA \n */
 | 
						|
/* >     Christof Voemel, University of California, Berkeley, USA \n */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date June 2016 */
 | 
						|
 | 
						|
/* > \ingroup OTHERauxiliary */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void dlarrd_(char *range, char *order, integer *n, doublereal 
 | 
						|
	*vl, doublereal *vu, integer *il, integer *iu, doublereal *gers, 
 | 
						|
	doublereal *reltol, doublereal *d__, doublereal *e, doublereal *e2, 
 | 
						|
	doublereal *pivmin, integer *nsplit, integer *isplit, integer *m, 
 | 
						|
	doublereal *w, doublereal *werr, doublereal *wl, doublereal *wu, 
 | 
						|
	integer *iblock, integer *indexw, doublereal *work, integer *iwork, 
 | 
						|
	integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer i__1, i__2, i__3;
 | 
						|
    doublereal d__1, d__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer iend, jblk, ioff, iout, itmp1, itmp2, i__, j, jdisc;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer iinfo;
 | 
						|
    doublereal atoli;
 | 
						|
    integer iwoff, itmax;
 | 
						|
    doublereal wkill, rtoli, uflow, tnorm;
 | 
						|
    integer ib, ie, je, nb;
 | 
						|
    doublereal gl;
 | 
						|
    integer im, in;
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    doublereal gu;
 | 
						|
    integer ibegin, iw;
 | 
						|
    extern /* Subroutine */ void dlaebz_(integer *, integer *, integer *, 
 | 
						|
	    integer *, integer *, integer *, doublereal *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
 | 
						|
	     doublereal *, doublereal *, integer *, integer *, doublereal *, 
 | 
						|
	    integer *, integer *);
 | 
						|
    integer irange, idiscl, idumma[1];
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *, ftnlen, ftnlen);
 | 
						|
    integer idiscu;
 | 
						|
    logical ncnvrg, toofew;
 | 
						|
    integer jee;
 | 
						|
    doublereal eps;
 | 
						|
    integer nwl;
 | 
						|
    doublereal wlu, wul;
 | 
						|
    integer nwu;
 | 
						|
    doublereal tmp1, tmp2;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     June 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --iwork;
 | 
						|
    --work;
 | 
						|
    --indexw;
 | 
						|
    --iblock;
 | 
						|
    --werr;
 | 
						|
    --w;
 | 
						|
    --isplit;
 | 
						|
    --e2;
 | 
						|
    --e;
 | 
						|
    --d__;
 | 
						|
    --gers;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n <= 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Decode RANGE */
 | 
						|
 | 
						|
    if (lsame_(range, "A")) {
 | 
						|
	irange = 1;
 | 
						|
    } else if (lsame_(range, "V")) {
 | 
						|
	irange = 2;
 | 
						|
    } else if (lsame_(range, "I")) {
 | 
						|
	irange = 3;
 | 
						|
    } else {
 | 
						|
	irange = 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check for Errors */
 | 
						|
 | 
						|
    if (irange <= 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! (lsame_(order, "B") || lsame_(order, 
 | 
						|
	    "E"))) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (irange == 2) {
 | 
						|
	if (*vl >= *vu) {
 | 
						|
	    *info = -5;
 | 
						|
	}
 | 
						|
    } else if (irange == 3 && (*il < 1 || *il > f2cmax(1,*n))) {
 | 
						|
	*info = -6;
 | 
						|
    } else if (irange == 3 && (*iu < f2cmin(*n,*il) || *iu > *n)) {
 | 
						|
	*info = -7;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
/*     Initialize error flags */
 | 
						|
    *info = 0;
 | 
						|
    ncnvrg = FALSE_;
 | 
						|
    toofew = FALSE_;
 | 
						|
/*     Quick return if possible */
 | 
						|
    *m = 0;
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
/*     Simplification: */
 | 
						|
    if (irange == 3 && *il == 1 && *iu == *n) {
 | 
						|
	irange = 1;
 | 
						|
    }
 | 
						|
/*     Get machine constants */
 | 
						|
    eps = dlamch_("P");
 | 
						|
    uflow = dlamch_("U");
 | 
						|
/*     Special Case when N=1 */
 | 
						|
/*     Treat case of 1x1 matrix for quick return */
 | 
						|
    if (*n == 1) {
 | 
						|
	if (irange == 1 || irange == 2 && d__[1] > *vl && d__[1] <= *vu || 
 | 
						|
		irange == 3 && *il == 1 && *iu == 1) {
 | 
						|
	    *m = 1;
 | 
						|
	    w[1] = d__[1];
 | 
						|
/*           The computation error of the eigenvalue is zero */
 | 
						|
	    werr[1] = 0.;
 | 
						|
	    iblock[1] = 1;
 | 
						|
	    indexw[1] = 1;
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
/*     NB is the minimum vector length for vector bisection, or 0 */
 | 
						|
/*     if only scalar is to be done. */
 | 
						|
    nb = ilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
 | 
						|
	    ftnlen)1);
 | 
						|
    if (nb <= 1) {
 | 
						|
	nb = 0;
 | 
						|
    }
 | 
						|
/*     Find global spectral radius */
 | 
						|
    gl = d__[1];
 | 
						|
    gu = d__[1];
 | 
						|
    i__1 = *n;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
/* Computing MIN */
 | 
						|
	d__1 = gl, d__2 = gers[(i__ << 1) - 1];
 | 
						|
	gl = f2cmin(d__1,d__2);
 | 
						|
/* Computing MAX */
 | 
						|
	d__1 = gu, d__2 = gers[i__ * 2];
 | 
						|
	gu = f2cmax(d__1,d__2);
 | 
						|
/* L5: */
 | 
						|
    }
 | 
						|
/*     Compute global Gerschgorin bounds and spectral diameter */
 | 
						|
/* Computing MAX */
 | 
						|
    d__1 = abs(gl), d__2 = abs(gu);
 | 
						|
    tnorm = f2cmax(d__1,d__2);
 | 
						|
    gl = gl - tnorm * 2. * eps * *n - *pivmin * 4.;
 | 
						|
    gu = gu + tnorm * 2. * eps * *n + *pivmin * 4.;
 | 
						|
/*     [JAN/28/2009] remove the line below since SPDIAM variable not use */
 | 
						|
/*     SPDIAM = GU - GL */
 | 
						|
/*     Input arguments for DLAEBZ: */
 | 
						|
/*     The relative tolerance.  An interval (a,b] lies within */
 | 
						|
/*     "relative tolerance" if  b-a < RELTOL*f2cmax(|a|,|b|), */
 | 
						|
    rtoli = *reltol;
 | 
						|
/*     Set the absolute tolerance for interval convergence to zero to force */
 | 
						|
/*     interval convergence based on relative size of the interval. */
 | 
						|
/*     This is dangerous because intervals might not converge when RELTOL is */
 | 
						|
/*     small. But at least a very small number should be selected so that for */
 | 
						|
/*     strongly graded matrices, the code can get relatively accurate */
 | 
						|
/*     eigenvalues. */
 | 
						|
    atoli = uflow * 4. + *pivmin * 4.;
 | 
						|
    if (irange == 3) {
 | 
						|
/*        RANGE='I': Compute an interval containing eigenvalues */
 | 
						|
/*        IL through IU. The initial interval [GL,GU] from the global */
 | 
						|
/*        Gerschgorin bounds GL and GU is refined by DLAEBZ. */
 | 
						|
	itmax = (integer) ((log(tnorm + *pivmin) - log(*pivmin)) / log(2.)) + 
 | 
						|
		2;
 | 
						|
	work[*n + 1] = gl;
 | 
						|
	work[*n + 2] = gl;
 | 
						|
	work[*n + 3] = gu;
 | 
						|
	work[*n + 4] = gu;
 | 
						|
	work[*n + 5] = gl;
 | 
						|
	work[*n + 6] = gu;
 | 
						|
	iwork[1] = -1;
 | 
						|
	iwork[2] = -1;
 | 
						|
	iwork[3] = *n + 1;
 | 
						|
	iwork[4] = *n + 1;
 | 
						|
	iwork[5] = *il - 1;
 | 
						|
	iwork[6] = *iu;
 | 
						|
 | 
						|
	dlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, pivmin, &
 | 
						|
		d__[1], &e[1], &e2[1], &iwork[5], &work[*n + 1], &work[*n + 5]
 | 
						|
		, &iout, &iwork[1], &w[1], &iblock[1], &iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = iinfo;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
/*        On exit, output intervals may not be ordered by ascending negcount */
 | 
						|
	if (iwork[6] == *iu) {
 | 
						|
	    *wl = work[*n + 1];
 | 
						|
	    wlu = work[*n + 3];
 | 
						|
	    nwl = iwork[1];
 | 
						|
	    *wu = work[*n + 4];
 | 
						|
	    wul = work[*n + 2];
 | 
						|
	    nwu = iwork[4];
 | 
						|
	} else {
 | 
						|
	    *wl = work[*n + 2];
 | 
						|
	    wlu = work[*n + 4];
 | 
						|
	    nwl = iwork[2];
 | 
						|
	    *wu = work[*n + 3];
 | 
						|
	    wul = work[*n + 1];
 | 
						|
	    nwu = iwork[3];
 | 
						|
	}
 | 
						|
/*        On exit, the interval [WL, WLU] contains a value with negcount NWL, */
 | 
						|
/*        and [WUL, WU] contains a value with negcount NWU. */
 | 
						|
	if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
 | 
						|
	    *info = 4;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    } else if (irange == 2) {
 | 
						|
	*wl = *vl;
 | 
						|
	*wu = *vu;
 | 
						|
    } else if (irange == 1) {
 | 
						|
	*wl = gl;
 | 
						|
	*wu = gu;
 | 
						|
    }
 | 
						|
/*     Find Eigenvalues -- Loop Over blocks and recompute NWL and NWU. */
 | 
						|
/*     NWL accumulates the number of eigenvalues .le. WL, */
 | 
						|
/*     NWU accumulates the number of eigenvalues .le. WU */
 | 
						|
    *m = 0;
 | 
						|
    iend = 0;
 | 
						|
    *info = 0;
 | 
						|
    nwl = 0;
 | 
						|
    nwu = 0;
 | 
						|
 | 
						|
    i__1 = *nsplit;
 | 
						|
    for (jblk = 1; jblk <= i__1; ++jblk) {
 | 
						|
	ioff = iend;
 | 
						|
	ibegin = ioff + 1;
 | 
						|
	iend = isplit[jblk];
 | 
						|
	in = iend - ioff;
 | 
						|
 | 
						|
	if (in == 1) {
 | 
						|
/*           1x1 block */
 | 
						|
	    if (*wl >= d__[ibegin] - *pivmin) {
 | 
						|
		++nwl;
 | 
						|
	    }
 | 
						|
	    if (*wu >= d__[ibegin] - *pivmin) {
 | 
						|
		++nwu;
 | 
						|
	    }
 | 
						|
	    if (irange == 1 || *wl < d__[ibegin] - *pivmin && *wu >= d__[
 | 
						|
		    ibegin] - *pivmin) {
 | 
						|
		++(*m);
 | 
						|
		w[*m] = d__[ibegin];
 | 
						|
		werr[*m] = 0.;
 | 
						|
/*              The gap for a single block doesn't matter for the later */
 | 
						|
/*              algorithm and is assigned an arbitrary large value */
 | 
						|
		iblock[*m] = jblk;
 | 
						|
		indexw[*m] = 1;
 | 
						|
	    }
 | 
						|
/*        Disabled 2x2 case because of a failure on the following matrix */
 | 
						|
/*        RANGE = 'I', IL = IU = 4 */
 | 
						|
/*          Original Tridiagonal, d = [ */
 | 
						|
/*           -0.150102010615740E+00 */
 | 
						|
/*           -0.849897989384260E+00 */
 | 
						|
/*           -0.128208148052635E-15 */
 | 
						|
/*            0.128257718286320E-15 */
 | 
						|
/*          ]; */
 | 
						|
/*          e = [ */
 | 
						|
/*           -0.357171383266986E+00 */
 | 
						|
/*           -0.180411241501588E-15 */
 | 
						|
/*           -0.175152352710251E-15 */
 | 
						|
/*          ]; */
 | 
						|
 | 
						|
/*         ELSE IF( IN.EQ.2 ) THEN */
 | 
						|
/* *           2x2 block */
 | 
						|
/*            DISC = SQRT( (HALF*(D(IBEGIN)-D(IEND)))**2 + E(IBEGIN)**2 ) */
 | 
						|
/*            TMP1 = HALF*(D(IBEGIN)+D(IEND)) */
 | 
						|
/*            L1 = TMP1 - DISC */
 | 
						|
/*            IF( WL.GE. L1-PIVMIN ) */
 | 
						|
/*     $         NWL = NWL + 1 */
 | 
						|
/*            IF( WU.GE. L1-PIVMIN ) */
 | 
						|
/*     $         NWU = NWU + 1 */
 | 
						|
/*            IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L1-PIVMIN .AND. WU.GE. */
 | 
						|
/*     $          L1-PIVMIN ) ) THEN */
 | 
						|
/*               M = M + 1 */
 | 
						|
/*               W( M ) = L1 */
 | 
						|
/* *              The uncertainty of eigenvalues of a 2x2 matrix is very small */
 | 
						|
/*               WERR( M ) = EPS * ABS( W( M ) ) * TWO */
 | 
						|
/*               IBLOCK( M ) = JBLK */
 | 
						|
/*               INDEXW( M ) = 1 */
 | 
						|
/*            ENDIF */
 | 
						|
/*            L2 = TMP1 + DISC */
 | 
						|
/*            IF( WL.GE. L2-PIVMIN ) */
 | 
						|
/*     $         NWL = NWL + 1 */
 | 
						|
/*            IF( WU.GE. L2-PIVMIN ) */
 | 
						|
/*     $         NWU = NWU + 1 */
 | 
						|
/*            IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L2-PIVMIN .AND. WU.GE. */
 | 
						|
/*     $          L2-PIVMIN ) ) THEN */
 | 
						|
/*               M = M + 1 */
 | 
						|
/*               W( M ) = L2 */
 | 
						|
/* *              The uncertainty of eigenvalues of a 2x2 matrix is very small */
 | 
						|
/*               WERR( M ) = EPS * ABS( W( M ) ) * TWO */
 | 
						|
/*               IBLOCK( M ) = JBLK */
 | 
						|
/*               INDEXW( M ) = 2 */
 | 
						|
/*            ENDIF */
 | 
						|
	} else {
 | 
						|
/*           General Case - block of size IN >= 2 */
 | 
						|
/*           Compute local Gerschgorin interval and use it as the initial */
 | 
						|
/*           interval for DLAEBZ */
 | 
						|
	    gu = d__[ibegin];
 | 
						|
	    gl = d__[ibegin];
 | 
						|
	    tmp1 = 0.;
 | 
						|
	    i__2 = iend;
 | 
						|
	    for (j = ibegin; j <= i__2; ++j) {
 | 
						|
/* Computing MIN */
 | 
						|
		d__1 = gl, d__2 = gers[(j << 1) - 1];
 | 
						|
		gl = f2cmin(d__1,d__2);
 | 
						|
/* Computing MAX */
 | 
						|
		d__1 = gu, d__2 = gers[j * 2];
 | 
						|
		gu = f2cmax(d__1,d__2);
 | 
						|
/* L40: */
 | 
						|
	    }
 | 
						|
/*           [JAN/28/2009] */
 | 
						|
/*           change SPDIAM by TNORM in lines 2 and 3 thereafter */
 | 
						|
/*           line 1: remove computation of SPDIAM (not useful anymore) */
 | 
						|
/*           SPDIAM = GU - GL */
 | 
						|
/*           GL = GL - FUDGE*SPDIAM*EPS*IN - FUDGE*PIVMIN */
 | 
						|
/*           GU = GU + FUDGE*SPDIAM*EPS*IN + FUDGE*PIVMIN */
 | 
						|
	    gl = gl - tnorm * 2. * eps * in - *pivmin * 2.;
 | 
						|
	    gu = gu + tnorm * 2. * eps * in + *pivmin * 2.;
 | 
						|
 | 
						|
	    if (irange > 1) {
 | 
						|
		if (gu < *wl) {
 | 
						|
/*                 the local block contains none of the wanted eigenvalues */
 | 
						|
		    nwl += in;
 | 
						|
		    nwu += in;
 | 
						|
		    goto L70;
 | 
						|
		}
 | 
						|
/*              refine search interval if possible, only range (WL,WU] matters */
 | 
						|
		gl = f2cmax(gl,*wl);
 | 
						|
		gu = f2cmin(gu,*wu);
 | 
						|
		if (gl >= gu) {
 | 
						|
		    goto L70;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
/*           Find negcount of initial interval boundaries GL and GU */
 | 
						|
	    work[*n + 1] = gl;
 | 
						|
	    work[*n + in + 1] = gu;
 | 
						|
	    dlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, 
 | 
						|
		    pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, &
 | 
						|
		    work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
 | 
						|
		    w[*m + 1], &iblock[*m + 1], &iinfo);
 | 
						|
	    if (iinfo != 0) {
 | 
						|
		*info = iinfo;
 | 
						|
		return;
 | 
						|
	    }
 | 
						|
 | 
						|
	    nwl += iwork[1];
 | 
						|
	    nwu += iwork[in + 1];
 | 
						|
	    iwoff = *m - iwork[1];
 | 
						|
/*           Compute Eigenvalues */
 | 
						|
	    itmax = (integer) ((log(gu - gl + *pivmin) - log(*pivmin)) / log(
 | 
						|
		    2.)) + 2;
 | 
						|
	    dlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, 
 | 
						|
		    pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, &
 | 
						|
		    work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1],
 | 
						|
		     &w[*m + 1], &iblock[*m + 1], &iinfo);
 | 
						|
	    if (iinfo != 0) {
 | 
						|
		*info = iinfo;
 | 
						|
		return;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Copy eigenvalues into W and IBLOCK */
 | 
						|
/*           Use -JBLK for block number for unconverged eigenvalues. */
 | 
						|
/*           Loop over the number of output intervals from DLAEBZ */
 | 
						|
	    i__2 = iout;
 | 
						|
	    for (j = 1; j <= i__2; ++j) {
 | 
						|
/*              eigenvalue approximation is middle point of interval */
 | 
						|
		tmp1 = (work[j + *n] + work[j + in + *n]) * .5;
 | 
						|
/*              semi length of error interval */
 | 
						|
		tmp2 = (d__1 = work[j + *n] - work[j + in + *n], abs(d__1)) * 
 | 
						|
			.5;
 | 
						|
		if (j > iout - iinfo) {
 | 
						|
/*                 Flag non-convergence. */
 | 
						|
		    ncnvrg = TRUE_;
 | 
						|
		    ib = -jblk;
 | 
						|
		} else {
 | 
						|
		    ib = jblk;
 | 
						|
		}
 | 
						|
		i__3 = iwork[j + in] + iwoff;
 | 
						|
		for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
 | 
						|
		    w[je] = tmp1;
 | 
						|
		    werr[je] = tmp2;
 | 
						|
		    indexw[je] = je - iwoff;
 | 
						|
		    iblock[je] = ib;
 | 
						|
/* L50: */
 | 
						|
		}
 | 
						|
/* L60: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    *m += im;
 | 
						|
	}
 | 
						|
L70:
 | 
						|
	;
 | 
						|
    }
 | 
						|
/*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU */
 | 
						|
/*     If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */
 | 
						|
    if (irange == 3) {
 | 
						|
	idiscl = *il - 1 - nwl;
 | 
						|
	idiscu = nwu - *iu;
 | 
						|
 | 
						|
	if (idiscl > 0) {
 | 
						|
	    im = 0;
 | 
						|
	    i__1 = *m;
 | 
						|
	    for (je = 1; je <= i__1; ++je) {
 | 
						|
/*              Remove some of the smallest eigenvalues from the left so that */
 | 
						|
/*              at the end IDISCL =0. Move all eigenvalues up to the left. */
 | 
						|
		if (w[je] <= wlu && idiscl > 0) {
 | 
						|
		    --idiscl;
 | 
						|
		} else {
 | 
						|
		    ++im;
 | 
						|
		    w[im] = w[je];
 | 
						|
		    werr[im] = werr[je];
 | 
						|
		    indexw[im] = indexw[je];
 | 
						|
		    iblock[im] = iblock[je];
 | 
						|
		}
 | 
						|
/* L80: */
 | 
						|
	    }
 | 
						|
	    *m = im;
 | 
						|
	}
 | 
						|
	if (idiscu > 0) {
 | 
						|
/*           Remove some of the largest eigenvalues from the right so that */
 | 
						|
/*           at the end IDISCU =0. Move all eigenvalues up to the left. */
 | 
						|
	    im = *m + 1;
 | 
						|
	    for (je = *m; je >= 1; --je) {
 | 
						|
		if (w[je] >= wul && idiscu > 0) {
 | 
						|
		    --idiscu;
 | 
						|
		} else {
 | 
						|
		    --im;
 | 
						|
		    w[im] = w[je];
 | 
						|
		    werr[im] = werr[je];
 | 
						|
		    indexw[im] = indexw[je];
 | 
						|
		    iblock[im] = iblock[je];
 | 
						|
		}
 | 
						|
/* L81: */
 | 
						|
	    }
 | 
						|
	    jee = 0;
 | 
						|
	    i__1 = *m;
 | 
						|
	    for (je = im; je <= i__1; ++je) {
 | 
						|
		++jee;
 | 
						|
		w[jee] = w[je];
 | 
						|
		werr[jee] = werr[je];
 | 
						|
		indexw[jee] = indexw[je];
 | 
						|
		iblock[jee] = iblock[je];
 | 
						|
/* L82: */
 | 
						|
	    }
 | 
						|
	    *m = *m - im + 1;
 | 
						|
	}
 | 
						|
	if (idiscl > 0 || idiscu > 0) {
 | 
						|
/*           Code to deal with effects of bad arithmetic. (If N(w) is */
 | 
						|
/*           monotone non-decreasing, this should never happen.) */
 | 
						|
/*           Some low eigenvalues to be discarded are not in (WL,WLU], */
 | 
						|
/*           or high eigenvalues to be discarded are not in (WUL,WU] */
 | 
						|
/*           so just kill off the smallest IDISCL/largest IDISCU */
 | 
						|
/*           eigenvalues, by marking the corresponding IBLOCK = 0 */
 | 
						|
	    if (idiscl > 0) {
 | 
						|
		wkill = *wu;
 | 
						|
		i__1 = idiscl;
 | 
						|
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
 | 
						|
		    iw = 0;
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (je = 1; je <= i__2; ++je) {
 | 
						|
			if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
 | 
						|
			    iw = je;
 | 
						|
			    wkill = w[je];
 | 
						|
			}
 | 
						|
/* L90: */
 | 
						|
		    }
 | 
						|
		    iblock[iw] = 0;
 | 
						|
/* L100: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    if (idiscu > 0) {
 | 
						|
		wkill = *wl;
 | 
						|
		i__1 = idiscu;
 | 
						|
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
 | 
						|
		    iw = 0;
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (je = 1; je <= i__2; ++je) {
 | 
						|
			if (iblock[je] != 0 && (w[je] >= wkill || iw == 0)) {
 | 
						|
			    iw = je;
 | 
						|
			    wkill = w[je];
 | 
						|
			}
 | 
						|
/* L110: */
 | 
						|
		    }
 | 
						|
		    iblock[iw] = 0;
 | 
						|
/* L120: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
/*           Now erase all eigenvalues with IBLOCK set to zero */
 | 
						|
	    im = 0;
 | 
						|
	    i__1 = *m;
 | 
						|
	    for (je = 1; je <= i__1; ++je) {
 | 
						|
		if (iblock[je] != 0) {
 | 
						|
		    ++im;
 | 
						|
		    w[im] = w[je];
 | 
						|
		    werr[im] = werr[je];
 | 
						|
		    indexw[im] = indexw[je];
 | 
						|
		    iblock[im] = iblock[je];
 | 
						|
		}
 | 
						|
/* L130: */
 | 
						|
	    }
 | 
						|
	    *m = im;
 | 
						|
	}
 | 
						|
	if (idiscl < 0 || idiscu < 0) {
 | 
						|
	    toofew = TRUE_;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (irange == 1 && *m != *n || irange == 3 && *m != *iu - *il + 1) {
 | 
						|
	toofew = TRUE_;
 | 
						|
    }
 | 
						|
/*     If ORDER='B', do nothing the eigenvalues are already sorted by */
 | 
						|
/*        block. */
 | 
						|
/*     If ORDER='E', sort the eigenvalues from smallest to largest */
 | 
						|
    if (lsame_(order, "E") && *nsplit > 1) {
 | 
						|
	i__1 = *m - 1;
 | 
						|
	for (je = 1; je <= i__1; ++je) {
 | 
						|
	    ie = 0;
 | 
						|
	    tmp1 = w[je];
 | 
						|
	    i__2 = *m;
 | 
						|
	    for (j = je + 1; j <= i__2; ++j) {
 | 
						|
		if (w[j] < tmp1) {
 | 
						|
		    ie = j;
 | 
						|
		    tmp1 = w[j];
 | 
						|
		}
 | 
						|
/* L140: */
 | 
						|
	    }
 | 
						|
	    if (ie != 0) {
 | 
						|
		tmp2 = werr[ie];
 | 
						|
		itmp1 = iblock[ie];
 | 
						|
		itmp2 = indexw[ie];
 | 
						|
		w[ie] = w[je];
 | 
						|
		werr[ie] = werr[je];
 | 
						|
		iblock[ie] = iblock[je];
 | 
						|
		indexw[ie] = indexw[je];
 | 
						|
		w[je] = tmp1;
 | 
						|
		werr[je] = tmp2;
 | 
						|
		iblock[je] = itmp1;
 | 
						|
		indexw[je] = itmp2;
 | 
						|
	    }
 | 
						|
/* L150: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    if (ncnvrg) {
 | 
						|
	++(*info);
 | 
						|
    }
 | 
						|
    if (toofew) {
 | 
						|
	*info += 2;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of DLARRD */
 | 
						|
 | 
						|
} /* dlarrd_ */
 | 
						|
 |