413 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			413 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CHPGST
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CHPGVX + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chpgvx.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chpgvx.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chpgvx.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
 | |
| *                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
 | |
| *                          IWORK, IFAIL, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, RANGE, UPLO
 | |
| *       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
 | |
| *       REAL               ABSTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IFAIL( * ), IWORK( * )
 | |
| *       REAL               RWORK( * ), W( * )
 | |
| *       COMPLEX            AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CHPGVX computes selected eigenvalues and, optionally, eigenvectors
 | |
| *> of a complex generalized Hermitian-definite eigenproblem, of the form
 | |
| *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 | |
| *> B are assumed to be Hermitian, stored in packed format, and B is also
 | |
| *> positive definite.  Eigenvalues and eigenvectors can be selected by
 | |
| *> specifying either a range of values or a range of indices for the
 | |
| *> desired eigenvalues.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          Specifies the problem type to be solved:
 | |
| *>          = 1:  A*x = (lambda)*B*x
 | |
| *>          = 2:  A*B*x = (lambda)*x
 | |
| *>          = 3:  B*A*x = (lambda)*x
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': all eigenvalues will be found;
 | |
| *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | |
| *>                 will be found;
 | |
| *>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangles of A and B are stored;
 | |
| *>          = 'L':  Lower triangles of A and B are stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the Hermitian matrix
 | |
| *>          A, packed columnwise in a linear array.  The j-th column of A
 | |
| *>          is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, the contents of AP are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] BP
 | |
| *> \verbatim
 | |
| *>          BP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the Hermitian matrix
 | |
| *>          B, packed columnwise in a linear array.  The j-th column of B
 | |
| *>          is stored in the array BP as follows:
 | |
| *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, the triangular factor U or L from the Cholesky
 | |
| *>          factorization B = U**H*U or B = L*L**H, in the same storage
 | |
| *>          format as B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is REAL
 | |
| *>
 | |
| *>          If RANGE='V', the lower and upper bounds of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>
 | |
| *>          If RANGE='I', the indices (in ascending order) of the
 | |
| *>          smallest and largest eigenvalues to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ABSTOL
 | |
| *> \verbatim
 | |
| *>          ABSTOL is REAL
 | |
| *>          The absolute error tolerance for the eigenvalues.
 | |
| *>          An approximate eigenvalue is accepted as converged
 | |
| *>          when it is determined to lie in an interval [a,b]
 | |
| *>          of width less than or equal to
 | |
| *>
 | |
| *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | |
| *>
 | |
| *>          where EPS is the machine precision.  If ABSTOL is less than
 | |
| *>          or equal to zero, then  EPS*|T|  will be used in its place,
 | |
| *>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | |
| *>          by reducing AP to tridiagonal form.
 | |
| *>
 | |
| *>          Eigenvalues will be computed most accurately when ABSTOL is
 | |
| *>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
 | |
| *>          If this routine returns with INFO>0, indicating that some
 | |
| *>          eigenvectors did not converge, try setting ABSTOL to
 | |
| *>          2*SLAMCH('S').
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues found.  0 <= M <= N.
 | |
| *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          On normal exit, the first M elements contain the selected
 | |
| *>          eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ, N)
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | |
| *>          contain the orthonormal eigenvectors of the matrix A
 | |
| *>          corresponding to the selected eigenvalues, with the i-th
 | |
| *>          column of Z holding the eigenvector associated with W(i).
 | |
| *>          The eigenvectors are normalized as follows:
 | |
| *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
 | |
| *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
 | |
| *>
 | |
| *>          If an eigenvector fails to converge, then that column of Z
 | |
| *>          contains the latest approximation to the eigenvector, and the
 | |
| *>          index of the eigenvector is returned in IFAIL.
 | |
| *>          Note: the user must ensure that at least max(1,M) columns are
 | |
| *>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | |
| *>          is not known in advance and an upper bound must be used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (7*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (5*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IFAIL
 | |
| *> \verbatim
 | |
| *>          IFAIL is INTEGER array, dimension (N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
 | |
| *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
 | |
| *>          indices of the eigenvectors that failed to converge.
 | |
| *>          If JOBZ = 'N', then IFAIL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  CPPTRF or CHPEVX returned an error code:
 | |
| *>             <= N:  if INFO = i, CHPEVX failed to converge;
 | |
| *>                    i eigenvectors failed to converge.  Their indices
 | |
| *>                    are stored in array IFAIL.
 | |
| *>             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
 | |
| *>                    minor of order i of B is not positive definite.
 | |
| *>                    The factorization of B could not be completed and
 | |
| *>                    no eigenvalues or eigenvectors were computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexOTHEReigen
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
 | |
|      $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
 | |
|      $                   IWORK, IFAIL, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, RANGE, UPLO
 | |
|       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
 | |
|       REAL               ABSTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IFAIL( * ), IWORK( * )
 | |
|       REAL               RWORK( * ), W( * )
 | |
|       COMPLEX            AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            J
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CHPEVX, CHPGST, CPPTRF, CTPMV, CTPSV, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       ALLEIG = LSAME( RANGE, 'A' )
 | |
|       VALEIG = LSAME( RANGE, 'V' )
 | |
|       INDEIG = LSAME( RANGE, 'I' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE 
 | |
|          IF( VALEIG ) THEN
 | |
|             IF( N.GT.0 .AND. VU.LE.VL ) THEN
 | |
|                INFO = -9
 | |
|             END IF
 | |
|          ELSE IF( INDEIG ) THEN
 | |
|             IF( IL.LT.1 ) THEN
 | |
|                INFO = -10
 | |
|             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | |
|                INFO = -11
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|             INFO = -16
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CHPGVX', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Form a Cholesky factorization of B.
 | |
| *
 | |
|       CALL CPPTRF( UPLO, N, BP, INFO )
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          INFO = N + INFO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Transform problem to standard eigenvalue problem and solve.
 | |
| *
 | |
|       CALL CHPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | |
|       CALL CHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
 | |
|      $             W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
| *
 | |
| *        Backtransform eigenvectors to the original problem.
 | |
| *
 | |
|          IF( INFO.GT.0 )
 | |
|      $      M = INFO - 1
 | |
|          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'N'
 | |
|             ELSE
 | |
|                TRANS = 'C'
 | |
|             END IF
 | |
| *
 | |
|             DO 10 J = 1, M
 | |
|                CALL CTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | |
|      $                     1 )
 | |
|    10       CONTINUE
 | |
| *
 | |
|          ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *           For B*A*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = L*y or U**H*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'C'
 | |
|             ELSE
 | |
|                TRANS = 'N'
 | |
|             END IF
 | |
| *
 | |
|             DO 20 J = 1, M
 | |
|                CALL CTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | |
|      $                     1 )
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHPGVX
 | |
| *
 | |
|       END
 |