291 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLA_PORCOND_X + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_porcond_x.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_porcond_x.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_porcond_x.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION ZLA_PORCOND_X( UPLO, N, A, LDA, AF,
 | |
| *                                                LDAF, X, INFO, WORK,
 | |
| *                                                RWORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            N, LDA, LDAF, INFO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    ZLA_PORCOND_X Computes the infinity norm condition number of
 | |
| *>    op(A) * diag(X) where X is a COMPLEX*16 vector.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>       = 'U':  Upper triangle of A is stored;
 | |
| *>       = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>     The number of linear equations, i.e., the order of the
 | |
| *>     matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>     On entry, the N-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>     The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is COMPLEX*16 array, dimension (LDAF,N)
 | |
| *>     The triangular factor U or L from the Cholesky factorization
 | |
| *>     A = U**H*U or A = L*L**H, as computed by ZPOTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAF
 | |
| *> \verbatim
 | |
| *>          LDAF is INTEGER
 | |
| *>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension (N)
 | |
| *>     The vector X in the formula op(A) * diag(X).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>       = 0:  Successful exit.
 | |
| *>     i > 0:  The ith argument is invalid.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (2*N).
 | |
| *>     Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N).
 | |
| *>     Workspace.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complex16POcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION ZLA_PORCOND_X( UPLO, N, A, LDA, AF,
 | |
|      $                                         LDAF, X, INFO, WORK,
 | |
|      $                                         RWORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            N, LDA, LDAF, INFO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            KASE, I, J
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, TMP
 | |
|       LOGICAL            UP, UPPER
 | |
|       COMPLEX*16         ZDUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLACN2, ZPOTRS, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, REAL, DIMAG
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION CABS1
 | |
| *     ..
 | |
| *     .. Statement Function Definitions ..
 | |
|       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       ZLA_PORCOND_X = 0.0D+0
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF ( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZLA_PORCOND_X', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
|       UP = .FALSE.
 | |
|       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
 | |
| *
 | |
| *     Compute norm of op(A)*op2(C).
 | |
| *
 | |
|       ANORM = 0.0D+0
 | |
|       IF ( UP ) THEN
 | |
|          DO I = 1, N
 | |
|             TMP = 0.0D+0
 | |
|             DO J = 1, I
 | |
|                TMP = TMP + CABS1( A( J, I ) * X( J ) )
 | |
|             END DO
 | |
|             DO J = I+1, N
 | |
|                TMP = TMP + CABS1( A( I, J ) * X( J ) )
 | |
|             END DO
 | |
|             RWORK( I ) = TMP
 | |
|             ANORM = MAX( ANORM, TMP )
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO I = 1, N
 | |
|             TMP = 0.0D+0
 | |
|             DO J = 1, I
 | |
|                TMP = TMP + CABS1( A( I, J ) * X( J ) )
 | |
|             END DO
 | |
|             DO J = I+1, N
 | |
|                TMP = TMP + CABS1( A( J, I ) * X( J ) )
 | |
|             END DO
 | |
|             RWORK( I ) = TMP
 | |
|             ANORM = MAX( ANORM, TMP )
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          ZLA_PORCOND_X = 1.0D+0
 | |
|          RETURN
 | |
|       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Estimate the norm of inv(op(A)).
 | |
| *
 | |
|       AINVNM = 0.0D+0
 | |
| *
 | |
|       KASE = 0
 | |
|    10 CONTINUE
 | |
|       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | |
|       IF( KASE.NE.0 ) THEN
 | |
|          IF( KASE.EQ.2 ) THEN
 | |
| *
 | |
| *           Multiply by R.
 | |
| *
 | |
|             DO I = 1, N
 | |
|                WORK( I ) = WORK( I ) * RWORK( I )
 | |
|             END DO
 | |
| *
 | |
|             IF ( UP ) THEN
 | |
|                CALL ZPOTRS( 'U', N, 1, AF, LDAF,
 | |
|      $            WORK, N, INFO )
 | |
|             ELSE
 | |
|                CALL ZPOTRS( 'L', N, 1, AF, LDAF,
 | |
|      $            WORK, N, INFO )
 | |
|             ENDIF
 | |
| *
 | |
| *           Multiply by inv(X).
 | |
| *
 | |
|             DO I = 1, N
 | |
|                WORK( I ) = WORK( I ) / X( I )
 | |
|             END DO
 | |
|          ELSE
 | |
| *
 | |
| *           Multiply by inv(X**H).
 | |
| *
 | |
|             DO I = 1, N
 | |
|                WORK( I ) = WORK( I ) / X( I )
 | |
|             END DO
 | |
| *
 | |
|             IF ( UP ) THEN
 | |
|                CALL ZPOTRS( 'U', N, 1, AF, LDAF,
 | |
|      $            WORK, N, INFO )
 | |
|             ELSE
 | |
|                CALL ZPOTRS( 'L', N, 1, AF, LDAF,
 | |
|      $            WORK, N, INFO )
 | |
|             END IF
 | |
| *
 | |
| *           Multiply by R.
 | |
| *
 | |
|             DO I = 1, N
 | |
|                WORK( I ) = WORK( I ) * RWORK( I )
 | |
|             END DO
 | |
|          END IF
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Compute the estimate of the reciprocal condition number.
 | |
| *
 | |
|       IF( AINVNM .NE. 0.0D+0 )
 | |
|      $   ZLA_PORCOND_X = 1.0D+0 / AINVNM
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
|       END
 |