168 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLA_GBRPVGRW + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrpvgrw.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrpvgrw.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrpvgrw.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW( N, KL, KU, NCOLS, AB,
 | |
| *                                               LDAB, AFB, LDAFB )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            N, KL, KU, NCOLS, LDAB, LDAFB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLA_GBRPVGRW computes the reciprocal pivot growth factor
 | |
| *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
 | |
| *> much less than 1, the stability of the LU factorization of the
 | |
| *> (equilibrated) matrix A could be poor. This also means that the
 | |
| *> solution X, estimated condition numbers, and error bounds could be
 | |
| *> unreliable.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>     The number of linear equations, i.e., the order of the
 | |
| *>     matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>     The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>     The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NCOLS
 | |
| *> \verbatim
 | |
| *>          NCOLS is INTEGER
 | |
| *>     The number of columns of the matrix A.  NCOLS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX*16 array, dimension (LDAB,N)
 | |
| *>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
 | |
| *>     The j-th column of A is stored in the j-th column of the
 | |
| *>     array AB as follows:
 | |
| *>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AFB
 | |
| *> \verbatim
 | |
| *>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
 | |
| *>     Details of the LU factorization of the band matrix A, as
 | |
| *>     computed by ZGBTRF.  U is stored as an upper triangular
 | |
| *>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
 | |
| *>     and the multipliers used during the factorization are stored
 | |
| *>     in rows KL+KU+2 to 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFB
 | |
| *> \verbatim
 | |
| *>          LDAFB is INTEGER
 | |
| *>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complex16GBcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW( N, KL, KU, NCOLS, AB,
 | |
|      $                                        LDAB, AFB, LDAFB )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            N, KL, KU, NCOLS, LDAB, LDAFB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, KD
 | |
|       DOUBLE PRECISION   AMAX, UMAX, RPVGRW
 | |
|       COMPLEX*16         ZDUM
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, REAL, DIMAG
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     .. Statement Function Definitions ..
 | |
|       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RPVGRW = 1.0D+0
 | |
| 
 | |
|       KD = KU + 1
 | |
|       DO J = 1, NCOLS
 | |
|          AMAX = 0.0D+0
 | |
|          UMAX = 0.0D+0
 | |
|          DO I = MAX( J-KU, 1 ), MIN( J+KL, N )
 | |
|             AMAX = MAX( CABS1( AB( KD+I-J, J ) ), AMAX )
 | |
|          END DO
 | |
|          DO I = MAX( J-KU, 1 ), J
 | |
|             UMAX = MAX( CABS1( AFB( KD+I-J, J ) ), UMAX )
 | |
|          END DO
 | |
|          IF ( UMAX /= 0.0D+0 ) THEN
 | |
|             RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | |
|          END IF
 | |
|       END DO
 | |
|       ZLA_GBRPVGRW = RPVGRW
 | |
|       END
 |