1021 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1021 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DDRVVX
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
| *                          NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1,
 | |
| *                          VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1,
 | |
| *                          RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1,
 | |
| *                          RESULT, WORK, NWORK, IWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
 | |
| *      $                   NSIZES, NTYPES, NWORK
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
 | |
| *      $                   RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
 | |
| *      $                   RCNDV1( * ), RCONDE( * ), RCONDV( * ),
 | |
| *      $                   RESULT( 11 ), SCALE( * ), SCALE1( * ),
 | |
| *      $                   VL( LDVL, * ), VR( LDVR, * ), WI( * ),
 | |
| *      $                   WI1( * ), WORK( * ), WR( * ), WR1( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    DDRVVX  checks the nonsymmetric eigenvalue problem expert driver
 | |
| *>    DGEEVX.
 | |
| *>
 | |
| *>    DDRVVX uses both test matrices generated randomly depending on
 | |
| *>    data supplied in the calling sequence, as well as on data
 | |
| *>    read from an input file and including precomputed condition
 | |
| *>    numbers to which it compares the ones it computes.
 | |
| *>
 | |
| *>    When DDRVVX is called, a number of matrix "sizes" ("n's") and a
 | |
| *>    number of matrix "types" are specified in the calling sequence.
 | |
| *>    For each size ("n") and each type of matrix, one matrix will be
 | |
| *>    generated and used to test the nonsymmetric eigenroutines.  For
 | |
| *>    each matrix, 9 tests will be performed:
 | |
| *>
 | |
| *>    (1)     | A * VR - VR * W | / ( n |A| ulp )
 | |
| *>
 | |
| *>      Here VR is the matrix of unit right eigenvectors.
 | |
| *>      W is a block diagonal matrix, with a 1x1 block for each
 | |
| *>      real eigenvalue and a 2x2 block for each complex conjugate
 | |
| *>      pair.  If eigenvalues j and j+1 are a complex conjugate pair,
 | |
| *>      so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
 | |
| *>      2 x 2 block corresponding to the pair will be:
 | |
| *>
 | |
| *>              (  wr  wi  )
 | |
| *>              ( -wi  wr  )
 | |
| *>
 | |
| *>      Such a block multiplying an n x 2 matrix  ( ur ui ) on the
 | |
| *>      right will be the same as multiplying  ur + i*ui  by  wr + i*wi.
 | |
| *>
 | |
| *>    (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )
 | |
| *>
 | |
| *>      Here VL is the matrix of unit left eigenvectors, A**H is the
 | |
| *>      conjugate transpose of A, and W is as above.
 | |
| *>
 | |
| *>    (3)     | |VR(i)| - 1 | / ulp and largest component real
 | |
| *>
 | |
| *>      VR(i) denotes the i-th column of VR.
 | |
| *>
 | |
| *>    (4)     | |VL(i)| - 1 | / ulp and largest component real
 | |
| *>
 | |
| *>      VL(i) denotes the i-th column of VL.
 | |
| *>
 | |
| *>    (5)     W(full) = W(partial)
 | |
| *>
 | |
| *>      W(full) denotes the eigenvalues computed when VR, VL, RCONDV
 | |
| *>      and RCONDE are also computed, and W(partial) denotes the
 | |
| *>      eigenvalues computed when only some of VR, VL, RCONDV, and
 | |
| *>      RCONDE are computed.
 | |
| *>
 | |
| *>    (6)     VR(full) = VR(partial)
 | |
| *>
 | |
| *>      VR(full) denotes the right eigenvectors computed when VL, RCONDV
 | |
| *>      and RCONDE are computed, and VR(partial) denotes the result
 | |
| *>      when only some of VL and RCONDV are computed.
 | |
| *>
 | |
| *>    (7)     VL(full) = VL(partial)
 | |
| *>
 | |
| *>      VL(full) denotes the left eigenvectors computed when VR, RCONDV
 | |
| *>      and RCONDE are computed, and VL(partial) denotes the result
 | |
| *>      when only some of VR and RCONDV are computed.
 | |
| *>
 | |
| *>    (8)     0 if SCALE, ILO, IHI, ABNRM (full) =
 | |
| *>                 SCALE, ILO, IHI, ABNRM (partial)
 | |
| *>            1/ulp otherwise
 | |
| *>
 | |
| *>      SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
 | |
| *>      (full) is when VR, VL, RCONDE and RCONDV are also computed, and
 | |
| *>      (partial) is when some are not computed.
 | |
| *>
 | |
| *>    (9)     RCONDV(full) = RCONDV(partial)
 | |
| *>
 | |
| *>      RCONDV(full) denotes the reciprocal condition numbers of the
 | |
| *>      right eigenvectors computed when VR, VL and RCONDE are also
 | |
| *>      computed. RCONDV(partial) denotes the reciprocal condition
 | |
| *>      numbers when only some of VR, VL and RCONDE are computed.
 | |
| *>
 | |
| *>    The "sizes" are specified by an array NN(1:NSIZES); the value of
 | |
| *>    each element NN(j) specifies one size.
 | |
| *>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | |
| *>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *>    Currently, the list of possible types is:
 | |
| *>
 | |
| *>    (1)  The zero matrix.
 | |
| *>    (2)  The identity matrix.
 | |
| *>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
 | |
| *>
 | |
| *>    (4)  A diagonal matrix with evenly spaced entries
 | |
| *>         1, ..., ULP  and random signs.
 | |
| *>         (ULP = (first number larger than 1) - 1 )
 | |
| *>    (5)  A diagonal matrix with geometrically spaced entries
 | |
| *>         1, ..., ULP  and random signs.
 | |
| *>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | |
| *>         and random signs.
 | |
| *>
 | |
| *>    (7)  Same as (4), but multiplied by a constant near
 | |
| *>         the overflow threshold
 | |
| *>    (8)  Same as (4), but multiplied by a constant near
 | |
| *>         the underflow threshold
 | |
| *>
 | |
| *>    (9)  A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has evenly spaced entries 1, ..., ULP with random signs
 | |
| *>         on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (10) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has geometrically spaced entries 1, ..., ULP with random
 | |
| *>         signs on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (11) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has "clustered" entries 1, ULP,..., ULP with random
 | |
| *>         signs on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (12) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has real or complex conjugate paired eigenvalues randomly
 | |
| *>         chosen from ( ULP, 1 ) and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (13) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
 | |
| *>         with random signs on the diagonal and random O(1) entries
 | |
| *>         in the upper triangle.
 | |
| *>
 | |
| *>    (14) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has geometrically spaced entries
 | |
| *>         1, ..., ULP with random signs on the diagonal and random
 | |
| *>         O(1) entries in the upper triangle.
 | |
| *>
 | |
| *>    (15) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
 | |
| *>         with random signs on the diagonal and random O(1) entries
 | |
| *>         in the upper triangle.
 | |
| *>
 | |
| *>    (16) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has real or complex conjugate paired
 | |
| *>         eigenvalues randomly chosen from ( ULP, 1 ) and random
 | |
| *>         O(1) entries in the upper triangle.
 | |
| *>
 | |
| *>    (17) Same as (16), but multiplied by a constant
 | |
| *>         near the overflow threshold
 | |
| *>    (18) Same as (16), but multiplied by a constant
 | |
| *>         near the underflow threshold
 | |
| *>
 | |
| *>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
 | |
| *>         If N is at least 4, all entries in first two rows and last
 | |
| *>         row, and first column and last two columns are zero.
 | |
| *>    (20) Same as (19), but multiplied by a constant
 | |
| *>         near the overflow threshold
 | |
| *>    (21) Same as (19), but multiplied by a constant
 | |
| *>         near the underflow threshold
 | |
| *>
 | |
| *>    In addition, an input file will be read from logical unit number
 | |
| *>    NIUNIT. The file contains matrices along with precomputed
 | |
| *>    eigenvalues and reciprocal condition numbers for the eigenvalues
 | |
| *>    and right eigenvectors. For these matrices, in addition to tests
 | |
| *>    (1) to (9) we will compute the following two tests:
 | |
| *>
 | |
| *>   (10)  |RCONDV - RCDVIN| / cond(RCONDV)
 | |
| *>
 | |
| *>      RCONDV is the reciprocal right eigenvector condition number
 | |
| *>      computed by DGEEVX and RCDVIN (the precomputed true value)
 | |
| *>      is supplied as input. cond(RCONDV) is the condition number of
 | |
| *>      RCONDV, and takes errors in computing RCONDV into account, so
 | |
| *>      that the resulting quantity should be O(ULP). cond(RCONDV) is
 | |
| *>      essentially given by norm(A)/RCONDE.
 | |
| *>
 | |
| *>   (11)  |RCONDE - RCDEIN| / cond(RCONDE)
 | |
| *>
 | |
| *>      RCONDE is the reciprocal eigenvalue condition number
 | |
| *>      computed by DGEEVX and RCDEIN (the precomputed true value)
 | |
| *>      is supplied as input.  cond(RCONDE) is the condition number
 | |
| *>      of RCONDE, and takes errors in computing RCONDE into account,
 | |
| *>      so that the resulting quantity should be O(ULP). cond(RCONDE)
 | |
| *>      is essentially given by norm(A)/RCONDV.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NSIZES
 | |
| *> \verbatim
 | |
| *>          NSIZES is INTEGER
 | |
| *>          The number of sizes of matrices to use.  NSIZES must be at
 | |
| *>          least zero. If it is zero, no randomly generated matrices
 | |
| *>          are tested, but any test matrices read from NIUNIT will be
 | |
| *>          tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER array, dimension (NSIZES)
 | |
| *>          An array containing the sizes to be used for the matrices.
 | |
| *>          Zero values will be skipped.  The values must be at least
 | |
| *>          zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NTYPES
 | |
| *> \verbatim
 | |
| *>          NTYPES is INTEGER
 | |
| *>          The number of elements in DOTYPE. NTYPES must be at least
 | |
| *>          zero. If it is zero, no randomly generated test matrices
 | |
| *>          are tested, but and test matrices read from NIUNIT will be
 | |
| *>          tested. If it is MAXTYP+1 and NSIZES is 1, then an
 | |
| *>          additional type, MAXTYP+1 is defined, which is to use
 | |
| *>          whatever matrix is in A.  This is only useful if
 | |
| *>          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>          matrix of that size and of type j will be generated.
 | |
| *>          If NTYPES is smaller than the maximum number of types
 | |
| *>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>          MAXTYP will not be generated.  If NTYPES is larger
 | |
| *>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>          will be ignored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator. The array elements should be between 0 and 4095;
 | |
| *>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>          be odd.  The random number generator uses a linear
 | |
| *>          congruential sequence limited to small integers, and so
 | |
| *>          should produce machine independent random numbers. The
 | |
| *>          values of ISEED are changed on exit, and can be used in the
 | |
| *>          next call to DDRVVX to continue the same random number
 | |
| *>          sequence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          A test will count as "failed" if the "error", computed as
 | |
| *>          described above, exceeds THRESH.  Note that the error
 | |
| *>          is scaled to be O(1), so THRESH should be a reasonably
 | |
| *>          small multiple of 1, e.g., 10 or 100.  In particular,
 | |
| *>          it should not depend on the precision (single vs. double)
 | |
| *>          or the size of the matrix.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NIUNIT
 | |
| *> \verbatim
 | |
| *>          NIUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for reading in the data file of
 | |
| *>          problems to solve.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUNIT
 | |
| *> \verbatim
 | |
| *>          NOUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for printing out error messages
 | |
| *>          (e.g., if a routine returns INFO not equal to 0.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension
 | |
| *>                      (LDA, max(NN,12))
 | |
| *>          Used to hold the matrix whose eigenvalues are to be
 | |
| *>          computed.  On exit, A contains the last matrix actually used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays A and H.
 | |
| *>          LDA >= max(NN,12), since 12 is the dimension of the largest
 | |
| *>          matrix in the precomputed input file.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] H
 | |
| *> \verbatim
 | |
| *>          H is DOUBLE PRECISION array, dimension
 | |
| *>                      (LDA, max(NN,12))
 | |
| *>          Another copy of the test matrix A, modified by DGEEVX.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR
 | |
| *> \verbatim
 | |
| *>          WR is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI
 | |
| *> \verbatim
 | |
| *>          WI is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>
 | |
| *>          The real and imaginary parts of the eigenvalues of A.
 | |
| *>          On exit, WR + WI*i are the eigenvalues of the matrix in A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR1
 | |
| *> \verbatim
 | |
| *>          WR1 is DOUBLE PRECISION array, dimension (max(NN,12))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI1
 | |
| *> \verbatim
 | |
| *>          WI1 is DOUBLE PRECISION array, dimension (max(NN,12))
 | |
| *>
 | |
| *>          Like WR, WI, these arrays contain the eigenvalues of A,
 | |
| *>          but those computed when DGEEVX only computes a partial
 | |
| *>          eigendecomposition, i.e. not the eigenvalues and left
 | |
| *>          and right eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION array, dimension
 | |
| *>                      (LDVL, max(NN,12))
 | |
| *>          VL holds the computed left eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          Leading dimension of VL. Must be at least max(1,max(NN,12)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VR
 | |
| *> \verbatim
 | |
| *>          VR is DOUBLE PRECISION array, dimension
 | |
| *>                      (LDVR, max(NN,12))
 | |
| *>          VR holds the computed right eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          Leading dimension of VR. Must be at least max(1,max(NN,12)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] LRE
 | |
| *> \verbatim
 | |
| *>          LRE is DOUBLE PRECISION array, dimension
 | |
| *>                      (LDLRE, max(NN,12))
 | |
| *>          LRE holds the computed right or left eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDLRE
 | |
| *> \verbatim
 | |
| *>          LDLRE is INTEGER
 | |
| *>          Leading dimension of LRE. Must be at least max(1,max(NN,12))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCONDV
 | |
| *> \verbatim
 | |
| *>          RCONDV is DOUBLE PRECISION array, dimension (N)
 | |
| *>          RCONDV holds the computed reciprocal condition numbers
 | |
| *>          for eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCNDV1
 | |
| *> \verbatim
 | |
| *>          RCNDV1 is DOUBLE PRECISION array, dimension (N)
 | |
| *>          RCNDV1 holds more computed reciprocal condition numbers
 | |
| *>          for eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCDVIN
 | |
| *> \verbatim
 | |
| *>          RCDVIN is DOUBLE PRECISION array, dimension (N)
 | |
| *>          When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
 | |
| *>          condition numbers for eigenvectors to be compared with
 | |
| *>          RCONDV.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCONDE
 | |
| *> \verbatim
 | |
| *>          RCONDE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          RCONDE holds the computed reciprocal condition numbers
 | |
| *>          for eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCNDE1
 | |
| *> \verbatim
 | |
| *>          RCNDE1 is DOUBLE PRECISION array, dimension (N)
 | |
| *>          RCNDE1 holds more computed reciprocal condition numbers
 | |
| *>          for eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCDEIN
 | |
| *> \verbatim
 | |
| *>          RCDEIN is DOUBLE PRECISION array, dimension (N)
 | |
| *>          When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
 | |
| *>          condition numbers for eigenvalues to be compared with
 | |
| *>          RCONDE.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          Holds information describing balancing of matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE1
 | |
| *> \verbatim
 | |
| *>          SCALE1 is DOUBLE PRECISION array, dimension (N)
 | |
| *>          Holds information describing balancing of matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (11)
 | |
| *>          The values computed by the seven tests described above.
 | |
| *>          The values are currently limited to 1/ulp, to avoid overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (NWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NWORK
 | |
| *> \verbatim
 | |
| *>          NWORK is INTEGER
 | |
| *>          The number of entries in WORK.  This must be at least
 | |
| *>          max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) =
 | |
| *>          max(    360     ,6*NN(j)+2*NN(j)**2)    for all j.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (2*max(NN,12))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          If 0,  then successful exit.
 | |
| *>          If <0, then input paramter -INFO is incorrect.
 | |
| *>          If >0, DLATMR, SLATMS, SLATME or DGET23 returned an error
 | |
| *>                 code, and INFO is its absolute value.
 | |
| *>
 | |
| *>-----------------------------------------------------------------------
 | |
| *>
 | |
| *>     Some Local Variables and Parameters:
 | |
| *>     ---- ----- --------- --- ----------
 | |
| *>
 | |
| *>     ZERO, ONE       Real 0 and 1.
 | |
| *>     MAXTYP          The number of types defined.
 | |
| *>     NMAX            Largest value in NN or 12.
 | |
| *>     NERRS           The number of tests which have exceeded THRESH
 | |
| *>     COND, CONDS,
 | |
| *>     IMODE           Values to be passed to the matrix generators.
 | |
| *>     ANORM           Norm of A; passed to matrix generators.
 | |
| *>
 | |
| *>     OVFL, UNFL      Overflow and underflow thresholds.
 | |
| *>     ULP, ULPINV     Finest relative precision and its inverse.
 | |
| *>     RTULP, RTULPI   Square roots of the previous 4 values.
 | |
| *>
 | |
| *>             The following four arrays decode JTYPE:
 | |
| *>     KTYPE(j)        The general type (1-10) for type "j".
 | |
| *>     KMODE(j)        The MODE value to be passed to the matrix
 | |
| *>                     generator for type "j".
 | |
| *>     KMAGN(j)        The order of magnitude ( O(1),
 | |
| *>                     O(overflow^(1/2) ), O(underflow^(1/2) )
 | |
| *>     KCONDS(j)       Selectw whether CONDS is to be 1 or
 | |
| *>                     1/sqrt(ulp).  (0 means irrelevant.)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
|      $                   NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1,
 | |
|      $                   VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1,
 | |
|      $                   RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1,
 | |
|      $                   RESULT, WORK, NWORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
 | |
|      $                   NSIZES, NTYPES, NWORK
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
 | |
|      $                   RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
 | |
|      $                   RCNDV1( * ), RCONDE( * ), RCONDV( * ),
 | |
|      $                   RESULT( 11 ), SCALE( * ), SCALE1( * ),
 | |
|      $                   VL( LDVL, * ), VR( LDVR, * ), WI( * ),
 | |
|      $                   WI1( * ), WORK( * ), WR( * ), WR1( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 21 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADNN
 | |
|       CHARACTER          BALANC
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, IBAL, IINFO, IMODE, ITYPE, IWK, J, JCOL,
 | |
|      $                   JSIZE, JTYPE, MTYPES, N, NERRS, NFAIL, NMAX,
 | |
|      $                   NNWORK, NTEST, NTESTF, NTESTT
 | |
|       DOUBLE PRECISION   ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP,
 | |
|      $                   ULPINV, UNFL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       CHARACTER          ADUMMA( 1 ), BAL( 4 )
 | |
|       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
 | |
|      $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
 | |
|      $                   KTYPE( MAXTYP )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGET23, DLABAD, DLASET, DLASUM, DLATME, DLATMR,
 | |
|      $                   DLATMS, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
 | |
|       DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
 | |
|      $                   3, 1, 2, 3 /
 | |
|       DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
 | |
|      $                   1, 5, 5, 5, 4, 3, 1 /
 | |
|       DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
 | |
|       DATA               BAL / 'N', 'P', 'S', 'B' /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Double precision'
 | |
|       PATH( 2: 3 ) = 'VX'
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       NTESTT = 0
 | |
|       NTESTF = 0
 | |
|       INFO = 0
 | |
| *
 | |
| *     Important constants
 | |
| *
 | |
|       BADNN = .FALSE.
 | |
| *
 | |
| *     12 is the largest dimension in the input file of precomputed
 | |
| *     problems
 | |
| *
 | |
|       NMAX = 12
 | |
|       DO 10 J = 1, NSIZES
 | |
|          NMAX = MAX( NMAX, NN( J ) )
 | |
|          IF( NN( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( THRESH.LT.ZERO ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
 | |
|          INFO = -17
 | |
|       ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
 | |
|          INFO = -19
 | |
|       ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
 | |
|          INFO = -21
 | |
|       ELSE IF( 6*NMAX+2*NMAX**2.GT.NWORK ) THEN
 | |
|          INFO = -32
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DDRVVX', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     If nothing to do check on NIUNIT
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | |
|      $   GO TO 160
 | |
| *
 | |
| *     More Important constants
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       CALL DLABAD( UNFL, OVFL )
 | |
|       ULP = DLAMCH( 'Precision' )
 | |
|       ULPINV = ONE / ULP
 | |
|       RTULP = SQRT( ULP )
 | |
|       RTULPI = ONE / RTULP
 | |
| *
 | |
| *     Loop over sizes, types
 | |
| *
 | |
|       NERRS = 0
 | |
| *
 | |
|       DO 150 JSIZE = 1, NSIZES
 | |
|          N = NN( JSIZE )
 | |
|          IF( NSIZES.NE.1 ) THEN
 | |
|             MTYPES = MIN( MAXTYP, NTYPES )
 | |
|          ELSE
 | |
|             MTYPES = MIN( MAXTYP+1, NTYPES )
 | |
|          END IF
 | |
| *
 | |
|          DO 140 JTYPE = 1, MTYPES
 | |
|             IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $         GO TO 140
 | |
| *
 | |
| *           Save ISEED in case of an error.
 | |
| *
 | |
|             DO 20 J = 1, 4
 | |
|                IOLDSD( J ) = ISEED( J )
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Compute "A"
 | |
| *
 | |
| *           Control parameters:
 | |
| *
 | |
| *           KMAGN  KCONDS  KMODE        KTYPE
 | |
| *       =1  O(1)   1       clustered 1  zero
 | |
| *       =2  large  large   clustered 2  identity
 | |
| *       =3  small          exponential  Jordan
 | |
| *       =4                 arithmetic   diagonal, (w/ eigenvalues)
 | |
| *       =5                 random log   symmetric, w/ eigenvalues
 | |
| *       =6                 random       general, w/ eigenvalues
 | |
| *       =7                              random diagonal
 | |
| *       =8                              random symmetric
 | |
| *       =9                              random general
 | |
| *       =10                             random triangular
 | |
| *
 | |
|             IF( MTYPES.GT.MAXTYP )
 | |
|      $         GO TO 90
 | |
| *
 | |
|             ITYPE = KTYPE( JTYPE )
 | |
|             IMODE = KMODE( JTYPE )
 | |
| *
 | |
| *           Compute norm
 | |
| *
 | |
|             GO TO ( 30, 40, 50 )KMAGN( JTYPE )
 | |
| *
 | |
|    30       CONTINUE
 | |
|             ANORM = ONE
 | |
|             GO TO 60
 | |
| *
 | |
|    40       CONTINUE
 | |
|             ANORM = OVFL*ULP
 | |
|             GO TO 60
 | |
| *
 | |
|    50       CONTINUE
 | |
|             ANORM = UNFL*ULPINV
 | |
|             GO TO 60
 | |
| *
 | |
|    60       CONTINUE
 | |
| *
 | |
|             CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | |
|             IINFO = 0
 | |
|             COND = ULPINV
 | |
| *
 | |
| *           Special Matrices -- Identity & Jordan block
 | |
| *
 | |
| *              Zero
 | |
| *
 | |
|             IF( ITYPE.EQ.1 ) THEN
 | |
|                IINFO = 0
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *              Identity
 | |
| *
 | |
|                DO 70 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|    70          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *              Jordan Block
 | |
| *
 | |
|                DO 80 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|                   IF( JCOL.GT.1 )
 | |
|      $               A( JCOL, JCOL-1 ) = ONE
 | |
|    80          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.4 ) THEN
 | |
| *
 | |
| *              Diagonal Matrix, [Eigen]values Specified
 | |
| *
 | |
|                CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.5 ) THEN
 | |
| *
 | |
| *              Symmetric, eigenvalues specified
 | |
| *
 | |
|                CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.6 ) THEN
 | |
| *
 | |
| *              General, eigenvalues specified
 | |
| *
 | |
|                IF( KCONDS( JTYPE ).EQ.1 ) THEN
 | |
|                   CONDS = ONE
 | |
|                ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
 | |
|                   CONDS = RTULPI
 | |
|                ELSE
 | |
|                   CONDS = ZERO
 | |
|                END IF
 | |
| *
 | |
|                ADUMMA( 1 ) = ' '
 | |
|                CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
 | |
|      $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
 | |
|      $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.7 ) THEN
 | |
| *
 | |
| *              Diagonal, random eigenvalues
 | |
| *
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.8 ) THEN
 | |
| *
 | |
| *              Symmetric, random eigenvalues
 | |
| *
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.9 ) THEN
 | |
| *
 | |
| *              General, random eigenvalues
 | |
| *
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
|                IF( N.GE.4 ) THEN
 | |
|                   CALL DLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
 | |
|                   CALL DLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
 | |
|      $                         LDA )
 | |
|                   CALL DLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
 | |
|      $                         LDA )
 | |
|                   CALL DLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
 | |
|      $                         LDA )
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.10 ) THEN
 | |
| *
 | |
| *              Triangular, random eigenvalues
 | |
| *
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                IINFO = 1
 | |
|             END IF
 | |
| *
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|    90       CONTINUE
 | |
| *
 | |
| *           Test for minimal and generous workspace
 | |
| *
 | |
|             DO 130 IWK = 1, 3
 | |
|                IF( IWK.EQ.1 ) THEN
 | |
|                   NNWORK = 3*N
 | |
|                ELSE IF( IWK.EQ.2 ) THEN
 | |
|                   NNWORK = 6*N + N**2
 | |
|                ELSE
 | |
|                   NNWORK = 6*N + 2*N**2
 | |
|                END IF
 | |
|                NNWORK = MAX( NNWORK, 1 )
 | |
| *
 | |
| *              Test for all balancing options
 | |
| *
 | |
|                DO 120 IBAL = 1, 4
 | |
|                   BALANC = BAL( IBAL )
 | |
| *
 | |
| *                 Perform tests
 | |
| *
 | |
|                   CALL DGET23( .FALSE., BALANC, JTYPE, THRESH, IOLDSD,
 | |
|      $                         NOUNIT, N, A, LDA, H, WR, WI, WR1, WI1,
 | |
|      $                         VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV,
 | |
|      $                         RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN,
 | |
|      $                         SCALE, SCALE1, RESULT, WORK, NNWORK,
 | |
|      $                         IWORK, INFO )
 | |
| *
 | |
| *                 Check for RESULT(j) > THRESH
 | |
| *
 | |
|                   NTEST = 0
 | |
|                   NFAIL = 0
 | |
|                   DO 100 J = 1, 9
 | |
|                      IF( RESULT( J ).GE.ZERO )
 | |
|      $                  NTEST = NTEST + 1
 | |
|                      IF( RESULT( J ).GE.THRESH )
 | |
|      $                  NFAIL = NFAIL + 1
 | |
|   100             CONTINUE
 | |
| *
 | |
|                   IF( NFAIL.GT.0 )
 | |
|      $               NTESTF = NTESTF + 1
 | |
|                   IF( NTESTF.EQ.1 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )PATH
 | |
|                      WRITE( NOUNIT, FMT = 9998 )
 | |
|                      WRITE( NOUNIT, FMT = 9997 )
 | |
|                      WRITE( NOUNIT, FMT = 9996 )
 | |
|                      WRITE( NOUNIT, FMT = 9995 )THRESH
 | |
|                      NTESTF = 2
 | |
|                   END IF
 | |
| *
 | |
|                   DO 110 J = 1, 9
 | |
|                      IF( RESULT( J ).GE.THRESH ) THEN
 | |
|                         WRITE( NOUNIT, FMT = 9994 )BALANC, N, IWK,
 | |
|      $                     IOLDSD, JTYPE, J, RESULT( J )
 | |
|                      END IF
 | |
|   110             CONTINUE
 | |
| *
 | |
|                   NERRS = NERRS + NFAIL
 | |
|                   NTESTT = NTESTT + NTEST
 | |
| *
 | |
|   120          CONTINUE
 | |
|   130       CONTINUE
 | |
|   140    CONTINUE
 | |
|   150 CONTINUE
 | |
| *
 | |
|   160 CONTINUE
 | |
| *
 | |
| *     Read in data from file to check accuracy of condition estimation.
 | |
| *     Assume input eigenvalues are sorted lexicographically (increasing
 | |
| *     by real part, then decreasing by imaginary part)
 | |
| *
 | |
|       JTYPE = 0
 | |
|   170 CONTINUE
 | |
|       READ( NIUNIT, FMT = *, END = 220 )N
 | |
| *
 | |
| *     Read input data until N=0
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   GO TO 220
 | |
|       JTYPE = JTYPE + 1
 | |
|       ISEED( 1 ) = JTYPE
 | |
|       DO 180 I = 1, N
 | |
|          READ( NIUNIT, FMT = * )( A( I, J ), J = 1, N )
 | |
|   180 CONTINUE
 | |
|       DO 190 I = 1, N
 | |
|          READ( NIUNIT, FMT = * )WR1( I ), WI1( I ), RCDEIN( I ),
 | |
|      $      RCDVIN( I )
 | |
|   190 CONTINUE
 | |
|       CALL DGET23( .TRUE., 'N', 22, THRESH, ISEED, NOUNIT, N, A, LDA, H,
 | |
|      $             WR, WI, WR1, WI1, VL, LDVL, VR, LDVR, LRE, LDLRE,
 | |
|      $             RCONDV, RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN,
 | |
|      $             SCALE, SCALE1, RESULT, WORK, 6*N+2*N**2, IWORK,
 | |
|      $             INFO )
 | |
| *
 | |
| *     Check for RESULT(j) > THRESH
 | |
| *
 | |
|       NTEST = 0
 | |
|       NFAIL = 0
 | |
|       DO 200 J = 1, 11
 | |
|          IF( RESULT( J ).GE.ZERO )
 | |
|      $      NTEST = NTEST + 1
 | |
|          IF( RESULT( J ).GE.THRESH )
 | |
|      $      NFAIL = NFAIL + 1
 | |
|   200 CONTINUE
 | |
| *
 | |
|       IF( NFAIL.GT.0 )
 | |
|      $   NTESTF = NTESTF + 1
 | |
|       IF( NTESTF.EQ.1 ) THEN
 | |
|          WRITE( NOUNIT, FMT = 9999 )PATH
 | |
|          WRITE( NOUNIT, FMT = 9998 )
 | |
|          WRITE( NOUNIT, FMT = 9997 )
 | |
|          WRITE( NOUNIT, FMT = 9996 )
 | |
|          WRITE( NOUNIT, FMT = 9995 )THRESH
 | |
|          NTESTF = 2
 | |
|       END IF
 | |
| *
 | |
|       DO 210 J = 1, 11
 | |
|          IF( RESULT( J ).GE.THRESH ) THEN
 | |
|             WRITE( NOUNIT, FMT = 9993 )N, JTYPE, J, RESULT( J )
 | |
|          END IF
 | |
|   210 CONTINUE
 | |
| *
 | |
|       NERRS = NERRS + NFAIL
 | |
|       NTESTT = NTESTT + NTEST
 | |
|       GO TO 170
 | |
|   220 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
 | |
| *
 | |
|  9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition',
 | |
|      $      ' Expert Driver', /
 | |
|      $      ' Matrix types (see DDRVVX for details): ' )
 | |
| *
 | |
|  9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
 | |
|      $      '           ', '  5=Diagonal: geometr. spaced entries.',
 | |
|      $      / '  2=Identity matrix.                    ', '  6=Diagona',
 | |
|      $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
 | |
|      $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
 | |
|      $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
 | |
|      $      'mall, evenly spaced.' )
 | |
|  9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
 | |
|      $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
 | |
|      $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
 | |
|      $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
 | |
|      $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
 | |
|      $      'lex ', / ' 12=Well-cond., random complex ', '         ',
 | |
|      $      ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
 | |
|      $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
 | |
|      $      ' complx ' )
 | |
|  9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
 | |
|      $      'with small random entries.', / ' 20=Matrix with large ran',
 | |
|      $      'dom entries.   ', ' 22=Matrix read from input file', / )
 | |
|  9995 FORMAT( ' Tests performed with test threshold =', F8.2,
 | |
|      $      / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
 | |
|      $      / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
 | |
|      $      / ' 3 = | |VR(i)| - 1 | / ulp ',
 | |
|      $      / ' 4 = | |VL(i)| - 1 | / ulp ',
 | |
|      $      / ' 5 = 0 if W same no matter if VR or VL computed,',
 | |
|      $      ' 1/ulp otherwise', /
 | |
|      $      ' 6 = 0 if VR same no matter what else computed,',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 7 = 0 if VL same no matter what else computed,',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 8 = 0 if RCONDV same no matter what else computed,',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 9 = 0 if SCALE, ILO, IHI, ABNRM same no matter what else',
 | |
|      $      ' computed,  1/ulp otherwise',
 | |
|      $      / ' 10 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),',
 | |
|      $      / ' 11 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),' )
 | |
|  9994 FORMAT( ' BALANC=''', A1, ''',N=', I4, ',IWK=', I1, ', seed=',
 | |
|      $      4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
 | |
|  9993 FORMAT( ' N=', I5, ', input example =', I3, ',  test(', I2, ')=',
 | |
|      $      G10.3 )
 | |
|  9992 FORMAT( ' DDRVVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | |
|      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DDRVVX
 | |
| *
 | |
|       END
 |