418 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			418 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLA_SYAMV + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_syamv.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_syamv.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_syamv.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
 | |
| *                             INCY )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL               ALPHA, BETA
 | |
| *       INTEGER            INCX, INCY, LDA, N, UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), X( * ), Y( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLA_SYAMV  performs the matrix-vector operation
 | |
| *>
 | |
| *>         y := alpha*abs(A)*abs(x) + beta*abs(y),
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are vectors and A is an
 | |
| *> n by n symmetric matrix.
 | |
| *>
 | |
| *> This function is primarily used in calculating error bounds.
 | |
| *> To protect against underflow during evaluation, components in
 | |
| *> the resulting vector are perturbed away from zero by (N+1)
 | |
| *> times the underflow threshold.  To prevent unnecessarily large
 | |
| *> errors for block-structure embedded in general matrices,
 | |
| *> "symbolically" zero components are not perturbed.  A zero
 | |
| *> entry is considered "symbolic" if all multiplications involved
 | |
| *> in computing that entry have at least one zero multiplicand.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is INTEGER
 | |
| *>           On entry, UPLO specifies whether the upper or lower
 | |
| *>           triangular part of the array A is to be referenced as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              UPLO = BLAS_UPPER   Only the upper triangular part of A
 | |
| *>                                  is to be referenced.
 | |
| *>
 | |
| *>              UPLO = BLAS_LOWER   Only the lower triangular part of A
 | |
| *>                                  is to be referenced.
 | |
| *>
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the number of columns of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is REAL .
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array of DIMENSION ( LDA, n ).
 | |
| *>           Before entry, the leading m by n part of the array A must
 | |
| *>           contain the matrix of coefficients.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           max( 1, n ).
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) )
 | |
| *>           Before entry, the incremented array X must contain the
 | |
| *>           vector x.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL .
 | |
| *>           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *>           supplied as zero then Y need not be set on input.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is REAL array, dimension
 | |
| *>           ( 1 + ( n - 1 )*abs( INCY ) )
 | |
| *>           Before entry with BETA non-zero, the incremented array Y
 | |
| *>           must contain the vector y. On exit, Y is overwritten by the
 | |
| *>           updated vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realSYcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *>  -- Modified for the absolute-value product, April 2006
 | |
| *>     Jason Riedy, UC Berkeley
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
 | |
|      $                      INCY )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL               ALPHA, BETA
 | |
|       INTEGER            INCX, INCY, LDA, N, UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            SYMB_ZERO
 | |
|       REAL               TEMP, SAFE1
 | |
|       INTEGER            I, INFO, IY, J, JX, KX, KY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, SLAMCH
 | |
|       REAL               SLAMCH
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       EXTERNAL           ILAUPLO
 | |
|       INTEGER            ILAUPLO
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, ABS, SIGN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( UPLO.NE.ILAUPLO( 'U' ) .AND.
 | |
|      $         UPLO.NE.ILAUPLO( 'L' ) ) THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) )THEN
 | |
|          INFO = 5
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 7
 | |
|       ELSE IF( INCY.EQ.0 )THEN
 | |
|          INFO = 10
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'SSYMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set up the start points in  X  and  Y.
 | |
| *
 | |
|       IF( INCX.GT.0 )THEN
 | |
|          KX = 1
 | |
|       ELSE
 | |
|          KX = 1 - ( N - 1 )*INCX
 | |
|       END IF
 | |
|       IF( INCY.GT.0 )THEN
 | |
|          KY = 1
 | |
|       ELSE
 | |
|          KY = 1 - ( N - 1 )*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Set SAFE1 essentially to be the underflow threshold times the
 | |
| *     number of additions in each row.
 | |
| *
 | |
|       SAFE1 = SLAMCH( 'Safe minimum' )
 | |
|       SAFE1 = (N+1)*SAFE1
 | |
| *
 | |
| *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
 | |
| *
 | |
| *     The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
 | |
| *     the inexact flag.  Still doesn't help change the iteration order
 | |
| *     to per-column.
 | |
| *
 | |
|       IY = KY
 | |
|       IF ( INCX.EQ.1 ) THEN
 | |
|          IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
 | |
|             DO I = 1, N
 | |
|                IF ( BETA .EQ. ZERO ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                   Y( IY ) = 0.0
 | |
|                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                ELSE
 | |
|                   SYMB_ZERO = .FALSE.
 | |
|                   Y( IY ) = BETA * ABS( Y( IY ) )
 | |
|                END IF
 | |
|                IF ( ALPHA .NE. ZERO ) THEN
 | |
|                   DO J = 1, I
 | |
|                      TEMP = ABS( A( J, I ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
 | |
|                   END DO
 | |
|                   DO J = I+1, N
 | |
|                      TEMP = ABS( A( I, J ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
| 
 | |
|                IF ( .NOT.SYMB_ZERO )
 | |
|      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | |
| 
 | |
|                IY = IY + INCY
 | |
|             END DO
 | |
|          ELSE
 | |
|             DO I = 1, N
 | |
|                IF ( BETA .EQ. ZERO ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                   Y( IY ) = 0.0
 | |
|                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                ELSE
 | |
|                   SYMB_ZERO = .FALSE.
 | |
|                   Y( IY ) = BETA * ABS( Y( IY ) )
 | |
|                END IF
 | |
|                IF ( ALPHA .NE. ZERO ) THEN
 | |
|                   DO J = 1, I
 | |
|                      TEMP = ABS( A( I, J ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
 | |
|                   END DO
 | |
|                   DO J = I+1, N
 | |
|                      TEMP = ABS( A( J, I ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
| 
 | |
|                IF ( .NOT.SYMB_ZERO )
 | |
|      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | |
| 
 | |
|                IY = IY + INCY
 | |
|             END DO
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
 | |
|             DO I = 1, N
 | |
|                IF ( BETA .EQ. ZERO ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                   Y( IY ) = 0.0
 | |
|                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                ELSE
 | |
|                   SYMB_ZERO = .FALSE.
 | |
|                   Y( IY ) = BETA * ABS( Y( IY ) )
 | |
|                END IF
 | |
|                JX = KX
 | |
|                IF ( ALPHA .NE. ZERO ) THEN
 | |
|                   DO J = 1, I
 | |
|                      TEMP = ABS( A( J, I ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
 | |
|                      JX = JX + INCX
 | |
|                   END DO
 | |
|                   DO J = I+1, N
 | |
|                      TEMP = ABS( A( I, J ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
 | |
|                      JX = JX + INCX
 | |
|                   END DO
 | |
|                END IF
 | |
| 
 | |
|                IF ( .NOT.SYMB_ZERO )
 | |
|      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | |
| 
 | |
|                IY = IY + INCY
 | |
|             END DO
 | |
|          ELSE
 | |
|             DO I = 1, N
 | |
|                IF ( BETA .EQ. ZERO ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                   Y( IY ) = 0.0
 | |
|                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                ELSE
 | |
|                   SYMB_ZERO = .FALSE.
 | |
|                   Y( IY ) = BETA * ABS( Y( IY ) )
 | |
|                END IF
 | |
|                JX = KX
 | |
|                IF ( ALPHA .NE. ZERO ) THEN
 | |
|                   DO J = 1, I
 | |
|                      TEMP = ABS( A( I, J ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
 | |
|                      JX = JX + INCX
 | |
|                   END DO
 | |
|                   DO J = I+1, N
 | |
|                      TEMP = ABS( A( J, I ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
 | |
|                      JX = JX + INCX
 | |
|                   END DO
 | |
|                END IF
 | |
| 
 | |
|                IF ( .NOT.SYMB_ZERO )
 | |
|      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | |
| 
 | |
|                IY = IY + INCY
 | |
|             END DO
 | |
|          END IF
 | |
| 
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLA_SYAMV
 | |
| *
 | |
|       END
 |