1600 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1600 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGESVJ
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGESVJ + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesvj.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesvj.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesvj.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
 | |
| *                          LDV, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N
 | |
| *       CHARACTER*1        JOBA, JOBU, JOBV
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), SVA( N ), V( LDV, * ),
 | |
| *      $                   WORK( LWORK )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGESVJ computes the singular value decomposition (SVD) of a real
 | |
| *> M-by-N matrix A, where M >= N. The SVD of A is written as
 | |
| *>                                    [++]   [xx]   [x0]   [xx]
 | |
| *>              A = U * SIGMA * V^t,  [++] = [xx] * [ox] * [xx]
 | |
| *>                                    [++]   [xx]
 | |
| *> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
 | |
| *> matrix, and V is an N-by-N orthogonal matrix. The diagonal elements
 | |
| *> of SIGMA are the singular values of A. The columns of U and V are the
 | |
| *> left and the right singular vectors of A, respectively.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBA
 | |
| *> \verbatim
 | |
| *>          JOBA is CHARACTER* 1
 | |
| *>          Specifies the structure of A.
 | |
| *>          = 'L': The input matrix A is lower triangular;
 | |
| *>          = 'U': The input matrix A is upper triangular;
 | |
| *>          = 'G': The input matrix A is general M-by-N matrix, M >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBU
 | |
| *> \verbatim
 | |
| *>          JOBU is CHARACTER*1
 | |
| *>          Specifies whether to compute the left singular vectors
 | |
| *>          (columns of U):
 | |
| *>          = 'U': The left singular vectors corresponding to the nonzero
 | |
| *>                 singular values are computed and returned in the leading
 | |
| *>                 columns of A. See more details in the description of A.
 | |
| *>                 The default numerical orthogonality threshold is set to
 | |
| *>                 approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=SLAMCH('E').
 | |
| *>          = 'C': Analogous to JOBU='U', except that user can control the
 | |
| *>                 level of numerical orthogonality of the computed left
 | |
| *>                 singular vectors. TOL can be set to TOL = CTOL*EPS, where
 | |
| *>                 CTOL is given on input in the array WORK.
 | |
| *>                 No CTOL smaller than ONE is allowed. CTOL greater
 | |
| *>                 than 1 / EPS is meaningless. The option 'C'
 | |
| *>                 can be used if M*EPS is satisfactory orthogonality
 | |
| *>                 of the computed left singular vectors, so CTOL=M could
 | |
| *>                 save few sweeps of Jacobi rotations.
 | |
| *>                 See the descriptions of A and WORK(1).
 | |
| *>          = 'N': The matrix U is not computed. However, see the
 | |
| *>                 description of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV
 | |
| *> \verbatim
 | |
| *>          JOBV is CHARACTER*1
 | |
| *>          Specifies whether to compute the right singular vectors, that
 | |
| *>          is, the matrix V:
 | |
| *>          = 'V' : the matrix V is computed and returned in the array V
 | |
| *>          = 'A' : the Jacobi rotations are applied to the MV-by-N
 | |
| *>                  array V. In other words, the right singular vector
 | |
| *>                  matrix V is not computed explicitly; instead it is
 | |
| *>                  applied to an MV-by-N matrix initially stored in the
 | |
| *>                  first MV rows of V.
 | |
| *>          = 'N' : the matrix V is not computed and the array V is not
 | |
| *>                  referenced
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the input matrix A. 1/SLAMCH('E') > M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the input matrix A.
 | |
| *>          M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit,
 | |
| *>          If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C':
 | |
| *>                 If INFO .EQ. 0 :
 | |
| *>                 RANKA orthonormal columns of U are returned in the
 | |
| *>                 leading RANKA columns of the array A. Here RANKA <= N
 | |
| *>                 is the number of computed singular values of A that are
 | |
| *>                 above the underflow threshold SLAMCH('S'). The singular
 | |
| *>                 vectors corresponding to underflowed or zero singular
 | |
| *>                 values are not computed. The value of RANKA is returned
 | |
| *>                 in the array WORK as RANKA=NINT(WORK(2)). Also see the
 | |
| *>                 descriptions of SVA and WORK. The computed columns of U
 | |
| *>                 are mutually numerically orthogonal up to approximately
 | |
| *>                 TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'),
 | |
| *>                 see the description of JOBU.
 | |
| *>                 If INFO .GT. 0,
 | |
| *>                 the procedure SGESVJ did not converge in the given number
 | |
| *>                 of iterations (sweeps). In that case, the computed
 | |
| *>                 columns of U may not be orthogonal up to TOL. The output
 | |
| *>                 U (stored in A), SIGMA (given by the computed singular
 | |
| *>                 values in SVA(1:N)) and V is still a decomposition of the
 | |
| *>                 input matrix A in the sense that the residual
 | |
| *>                 ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small.
 | |
| *>          If JOBU .EQ. 'N':
 | |
| *>                 If INFO .EQ. 0 :
 | |
| *>                 Note that the left singular vectors are 'for free' in the
 | |
| *>                 one-sided Jacobi SVD algorithm. However, if only the
 | |
| *>                 singular values are needed, the level of numerical
 | |
| *>                 orthogonality of U is not an issue and iterations are
 | |
| *>                 stopped when the columns of the iterated matrix are
 | |
| *>                 numerically orthogonal up to approximately M*EPS. Thus,
 | |
| *>                 on exit, A contains the columns of U scaled with the
 | |
| *>                 corresponding singular values.
 | |
| *>                 If INFO .GT. 0 :
 | |
| *>                 the procedure SGESVJ did not converge in the given number
 | |
| *>                 of iterations (sweeps).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SVA
 | |
| *> \verbatim
 | |
| *>          SVA is REAL array, dimension (N)
 | |
| *>          On exit,
 | |
| *>          If INFO .EQ. 0 :
 | |
| *>          depending on the value SCALE = WORK(1), we have:
 | |
| *>                 If SCALE .EQ. ONE:
 | |
| *>                 SVA(1:N) contains the computed singular values of A.
 | |
| *>                 During the computation SVA contains the Euclidean column
 | |
| *>                 norms of the iterated matrices in the array A.
 | |
| *>                 If SCALE .NE. ONE:
 | |
| *>                 The singular values of A are SCALE*SVA(1:N), and this
 | |
| *>                 factored representation is due to the fact that some of the
 | |
| *>                 singular values of A might underflow or overflow.
 | |
| *>
 | |
| *>          If INFO .GT. 0 :
 | |
| *>          the procedure SGESVJ did not converge in the given number of
 | |
| *>          iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MV
 | |
| *> \verbatim
 | |
| *>          MV is INTEGER
 | |
| *>          If JOBV .EQ. 'A', then the product of Jacobi rotations in SGESVJ
 | |
| *>          is applied to the first MV rows of V. See the description of JOBV.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] V
 | |
| *> \verbatim
 | |
| *>          V is REAL array, dimension (LDV,N)
 | |
| *>          If JOBV = 'V', then V contains on exit the N-by-N matrix of
 | |
| *>                         the right singular vectors;
 | |
| *>          If JOBV = 'A', then V contains the product of the computed right
 | |
| *>                         singular vector matrix and the initial matrix in
 | |
| *>                         the array V.
 | |
| *>          If JOBV = 'N', then V is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V, LDV .GE. 1.
 | |
| *>          If JOBV .EQ. 'V', then LDV .GE. max(1,N).
 | |
| *>          If JOBV .EQ. 'A', then LDV .GE. max(1,MV) .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension max(4,M+N).
 | |
| *>          On entry,
 | |
| *>          If JOBU .EQ. 'C' :
 | |
| *>          WORK(1) = CTOL, where CTOL defines the threshold for convergence.
 | |
| *>                    The process stops if all columns of A are mutually
 | |
| *>                    orthogonal up to CTOL*EPS, EPS=SLAMCH('E').
 | |
| *>                    It is required that CTOL >= ONE, i.e. it is not
 | |
| *>                    allowed to force the routine to obtain orthogonality
 | |
| *>                    below EPSILON.
 | |
| *>          On exit,
 | |
| *>          WORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N)
 | |
| *>                    are the computed singular vcalues of A.
 | |
| *>                    (See description of SVA().)
 | |
| *>          WORK(2) = NINT(WORK(2)) is the number of the computed nonzero
 | |
| *>                    singular values.
 | |
| *>          WORK(3) = NINT(WORK(3)) is the number of the computed singular
 | |
| *>                    values that are larger than the underflow threshold.
 | |
| *>          WORK(4) = NINT(WORK(4)) is the number of sweeps of Jacobi
 | |
| *>                    rotations needed for numerical convergence.
 | |
| *>          WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
 | |
| *>                    This is useful information in cases when SGESVJ did
 | |
| *>                    not converge, as it can be used to estimate whether
 | |
| *>                    the output is stil useful and for post festum analysis.
 | |
| *>          WORK(6) = the largest absolute value over all sines of the
 | |
| *>                    Jacobi rotation angles in the last sweep. It can be
 | |
| *>                    useful for a post festum analysis.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>         length of WORK, WORK >= MAX(6,M+N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0 : successful exit.
 | |
| *>          < 0 : if INFO = -i, then the i-th argument had an illegal value
 | |
| *>          > 0 : SGESVJ did not converge in the maximal allowed number (30)
 | |
| *>                of sweeps. The output may still be useful. See the
 | |
| *>                description of WORK.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane
 | |
| *> rotations. The rotations are implemented as fast scaled rotations of
 | |
| *> Anda and Park [1]. In the case of underflow of the Jacobi angle, a
 | |
| *> modified Jacobi transformation of Drmac [4] is used. Pivot strategy uses
 | |
| *> column interchanges of de Rijk [2]. The relative accuracy of the computed
 | |
| *> singular values and the accuracy of the computed singular vectors (in
 | |
| *> angle metric) is as guaranteed by the theory of Demmel and Veselic [3].
 | |
| *> The condition number that determines the accuracy in the full rank case
 | |
| *> is essentially min_{D=diag} kappa(A*D), where kappa(.) is the
 | |
| *> spectral condition number. The best performance of this Jacobi SVD
 | |
| *> procedure is achieved if used in an  accelerated version of Drmac and
 | |
| *> Veselic [5,6], and it is the kernel routine in the SIGMA library [7].
 | |
| *> Some tunning parameters (marked with [TP]) are available for the
 | |
| *> implementer. \n
 | |
| *> The computational range for the nonzero singular values is the  machine
 | |
| *> number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even
 | |
| *> denormalized singular values can be computed with the corresponding
 | |
| *> gradual loss of accurate digits.
 | |
| *>
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
 | |
| *>
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *> [1] A. A. Anda and H. Park: Fast plane rotations with dynamic scaling. \n
 | |
| *>    SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174. \n\n
 | |
| *> [2] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the
 | |
| *>    singular value decomposition on a vector computer. \n
 | |
| *>    SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371. \n\n
 | |
| *> [3] J. Demmel and K. Veselic: Jacobi method is more accurate than QR. \n
 | |
| *> [4] Z. Drmac: Implementation of Jacobi rotations for accurate singular
 | |
| *>    value computation in floating point arithmetic. \n
 | |
| *>    SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222. \n\n
 | |
| *> [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. \n
 | |
| *>    SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. \n
 | |
| *>    LAPACK Working note 169. \n\n
 | |
| *> [6] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. \n
 | |
| *>    SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. \n
 | |
| *>    LAPACK Working note 170. \n\n
 | |
| *> [7] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
 | |
| *>    QSVD, (H,K)-SVD computations.\n
 | |
| *>    Department of Mathematics, University of Zagreb, 2008.
 | |
| *>
 | |
| *> \par Bugs, Examples and Comments:
 | |
| *  =================================
 | |
| *>
 | |
| *> Please report all bugs and send interesting test examples and comments to
 | |
| *> drmac@math.hr. Thank you.
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
 | |
|      $                   LDV, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N
 | |
|       CHARACTER*1        JOBA, JOBU, JOBV
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), SVA( N ), V( LDV, * ),
 | |
|      $                   WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Parameters ..
 | |
|       REAL               ZERO, HALF, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
 | |
|       INTEGER            NSWEEP
 | |
|       PARAMETER          ( NSWEEP = 30 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
 | |
|      $                   BIGTHETA, CS, CTOL, EPSLN, LARGE, MXAAPQ,
 | |
|      $                   MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL,
 | |
|      $                   SKL, SFMIN, SMALL, SN, T, TEMP1, THETA,
 | |
|      $                   THSIGN, TOL
 | |
|       INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
 | |
|      $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34,
 | |
|      $                   N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP,
 | |
|      $                   SWBAND
 | |
|       LOGICAL            APPLV, GOSCALE, LOWER, LSVEC, NOSCALE, ROTOK,
 | |
|      $                   RSVEC, UCTOL, UPPER
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               FASTR( 5 )
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AMAX1, AMIN1, FLOAT, MIN0, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
| *     ..
 | |
| *     from BLAS
 | |
|       REAL               SDOT, SNRM2
 | |
|       EXTERNAL           SDOT, SNRM2
 | |
|       INTEGER            ISAMAX
 | |
|       EXTERNAL           ISAMAX
 | |
| *     from LAPACK
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
| *     ..
 | |
| *     from BLAS
 | |
|       EXTERNAL           SAXPY, SCOPY, SROTM, SSCAL, SSWAP
 | |
| *     from LAPACK
 | |
|       EXTERNAL           SLASCL, SLASET, SLASSQ, XERBLA
 | |
| *
 | |
|       EXTERNAL           SGSVJ0, SGSVJ1
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       LSVEC = LSAME( JOBU, 'U' )
 | |
|       UCTOL = LSAME( JOBU, 'C' )
 | |
|       RSVEC = LSAME( JOBV, 'V' )
 | |
|       APPLV = LSAME( JOBV, 'A' )
 | |
|       UPPER = LSAME( JOBA, 'U' )
 | |
|       LOWER = LSAME( JOBA, 'L' )
 | |
| *
 | |
|       IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.M ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( MV.LT.0 ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( ( RSVEC .AND. ( LDV.LT.N ) ) .OR.
 | |
|      $         ( APPLV .AND. ( LDV.LT.MV ) ) ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( UCTOL .AND. ( WORK( 1 ).LE.ONE ) ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LWORK.LT.MAX0( M+N, 6 ) ) THEN
 | |
|          INFO = -13
 | |
|       ELSE
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
| *     #:(
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGESVJ', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| * #:) Quick return for void matrix
 | |
| *
 | |
|       IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN
 | |
| *
 | |
| *     Set numerical parameters
 | |
| *     The stopping criterion for Jacobi rotations is
 | |
| *
 | |
| *     max_{i<>j}|A(:,i)^T * A(:,j)|/(||A(:,i)||*||A(:,j)||) < CTOL*EPS
 | |
| *
 | |
| *     where EPS is the round-off and CTOL is defined as follows:
 | |
| *
 | |
|       IF( UCTOL ) THEN
 | |
| *        ... user controlled
 | |
|          CTOL = WORK( 1 )
 | |
|       ELSE
 | |
| *        ... default
 | |
|          IF( LSVEC .OR. RSVEC .OR. APPLV ) THEN
 | |
|             CTOL = SQRT( FLOAT( M ) )
 | |
|          ELSE
 | |
|             CTOL = FLOAT( M )
 | |
|          END IF
 | |
|       END IF
 | |
| *     ... and the machine dependent parameters are
 | |
| *[!]  (Make sure that SLAMCH() works properly on the target machine.)
 | |
| *
 | |
|       EPSLN = SLAMCH( 'Epsilon' )
 | |
|       ROOTEPS = SQRT( EPSLN )
 | |
|       SFMIN = SLAMCH( 'SafeMinimum' )
 | |
|       ROOTSFMIN = SQRT( SFMIN )
 | |
|       SMALL = SFMIN / EPSLN
 | |
|       BIG = SLAMCH( 'Overflow' )
 | |
| *     BIG         = ONE    / SFMIN
 | |
|       ROOTBIG = ONE / ROOTSFMIN
 | |
|       LARGE = BIG / SQRT( FLOAT( M*N ) )
 | |
|       BIGTHETA = ONE / ROOTEPS
 | |
| *
 | |
|       TOL = CTOL*EPSLN
 | |
|       ROOTTOL = SQRT( TOL )
 | |
| *
 | |
|       IF( FLOAT( M )*EPSLN.GE.ONE ) THEN
 | |
|          INFO = -4
 | |
|          CALL XERBLA( 'SGESVJ', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize the right singular vector matrix.
 | |
| *
 | |
|       IF( RSVEC ) THEN
 | |
|          MVL = N
 | |
|          CALL SLASET( 'A', MVL, N, ZERO, ONE, V, LDV )
 | |
|       ELSE IF( APPLV ) THEN
 | |
|          MVL = MV
 | |
|       END IF
 | |
|       RSVEC = RSVEC .OR. APPLV
 | |
| *
 | |
| *     Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N )
 | |
| *(!)  If necessary, scale A to protect the largest singular value
 | |
| *     from overflow. It is possible that saving the largest singular
 | |
| *     value destroys the information about the small ones.
 | |
| *     This initial scaling is almost minimal in the sense that the
 | |
| *     goal is to make sure that no column norm overflows, and that
 | |
| *     SQRT(N)*max_i SVA(i) does not overflow. If INFinite entries
 | |
| *     in A are detected, the procedure returns with INFO=-6.
 | |
| *
 | |
|       SKL = ONE / SQRT( FLOAT( M )*FLOAT( N ) )
 | |
|       NOSCALE = .TRUE.
 | |
|       GOSCALE = .TRUE.
 | |
| *
 | |
|       IF( LOWER ) THEN
 | |
| *        the input matrix is M-by-N lower triangular (trapezoidal)
 | |
|          DO 1874 p = 1, N
 | |
|             AAPP = ZERO
 | |
|             AAQQ = ONE
 | |
|             CALL SLASSQ( M-p+1, A( p, p ), 1, AAPP, AAQQ )
 | |
|             IF( AAPP.GT.BIG ) THEN
 | |
|                INFO = -6
 | |
|                CALL XERBLA( 'SGESVJ', -INFO )
 | |
|                RETURN
 | |
|             END IF
 | |
|             AAQQ = SQRT( AAQQ )
 | |
|             IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
 | |
|                SVA( p ) = AAPP*AAQQ
 | |
|             ELSE
 | |
|                NOSCALE = .FALSE.
 | |
|                SVA( p ) = AAPP*( AAQQ*SKL )
 | |
|                IF( GOSCALE ) THEN
 | |
|                   GOSCALE = .FALSE.
 | |
|                   DO 1873 q = 1, p - 1
 | |
|                      SVA( q ) = SVA( q )*SKL
 | |
|  1873             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|  1874    CONTINUE
 | |
|       ELSE IF( UPPER ) THEN
 | |
| *        the input matrix is M-by-N upper triangular (trapezoidal)
 | |
|          DO 2874 p = 1, N
 | |
|             AAPP = ZERO
 | |
|             AAQQ = ONE
 | |
|             CALL SLASSQ( p, A( 1, p ), 1, AAPP, AAQQ )
 | |
|             IF( AAPP.GT.BIG ) THEN
 | |
|                INFO = -6
 | |
|                CALL XERBLA( 'SGESVJ', -INFO )
 | |
|                RETURN
 | |
|             END IF
 | |
|             AAQQ = SQRT( AAQQ )
 | |
|             IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
 | |
|                SVA( p ) = AAPP*AAQQ
 | |
|             ELSE
 | |
|                NOSCALE = .FALSE.
 | |
|                SVA( p ) = AAPP*( AAQQ*SKL )
 | |
|                IF( GOSCALE ) THEN
 | |
|                   GOSCALE = .FALSE.
 | |
|                   DO 2873 q = 1, p - 1
 | |
|                      SVA( q ) = SVA( q )*SKL
 | |
|  2873             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|  2874    CONTINUE
 | |
|       ELSE
 | |
| *        the input matrix is M-by-N general dense
 | |
|          DO 3874 p = 1, N
 | |
|             AAPP = ZERO
 | |
|             AAQQ = ONE
 | |
|             CALL SLASSQ( M, A( 1, p ), 1, AAPP, AAQQ )
 | |
|             IF( AAPP.GT.BIG ) THEN
 | |
|                INFO = -6
 | |
|                CALL XERBLA( 'SGESVJ', -INFO )
 | |
|                RETURN
 | |
|             END IF
 | |
|             AAQQ = SQRT( AAQQ )
 | |
|             IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
 | |
|                SVA( p ) = AAPP*AAQQ
 | |
|             ELSE
 | |
|                NOSCALE = .FALSE.
 | |
|                SVA( p ) = AAPP*( AAQQ*SKL )
 | |
|                IF( GOSCALE ) THEN
 | |
|                   GOSCALE = .FALSE.
 | |
|                   DO 3873 q = 1, p - 1
 | |
|                      SVA( q ) = SVA( q )*SKL
 | |
|  3873             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|  3874    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( NOSCALE )SKL = ONE
 | |
| *
 | |
| *     Move the smaller part of the spectrum from the underflow threshold
 | |
| *(!)  Start by determining the position of the nonzero entries of the
 | |
| *     array SVA() relative to ( SFMIN, BIG ).
 | |
| *
 | |
|       AAPP = ZERO
 | |
|       AAQQ = BIG
 | |
|       DO 4781 p = 1, N
 | |
|          IF( SVA( p ).NE.ZERO )AAQQ = AMIN1( AAQQ, SVA( p ) )
 | |
|          AAPP = AMAX1( AAPP, SVA( p ) )
 | |
|  4781 CONTINUE
 | |
| *
 | |
| * #:) Quick return for zero matrix
 | |
| *
 | |
|       IF( AAPP.EQ.ZERO ) THEN
 | |
|          IF( LSVEC )CALL SLASET( 'G', M, N, ZERO, ONE, A, LDA )
 | |
|          WORK( 1 ) = ONE
 | |
|          WORK( 2 ) = ZERO
 | |
|          WORK( 3 ) = ZERO
 | |
|          WORK( 4 ) = ZERO
 | |
|          WORK( 5 ) = ZERO
 | |
|          WORK( 6 ) = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| * #:) Quick return for one-column matrix
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( LSVEC )CALL SLASCL( 'G', 0, 0, SVA( 1 ), SKL, M, 1,
 | |
|      $                           A( 1, 1 ), LDA, IERR )
 | |
|          WORK( 1 ) = ONE / SKL
 | |
|          IF( SVA( 1 ).GE.SFMIN ) THEN
 | |
|             WORK( 2 ) = ONE
 | |
|          ELSE
 | |
|             WORK( 2 ) = ZERO
 | |
|          END IF
 | |
|          WORK( 3 ) = ZERO
 | |
|          WORK( 4 ) = ZERO
 | |
|          WORK( 5 ) = ZERO
 | |
|          WORK( 6 ) = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Protect small singular values from underflow, and try to
 | |
| *     avoid underflows/overflows in computing Jacobi rotations.
 | |
| *
 | |
|       SN = SQRT( SFMIN / EPSLN )
 | |
|       TEMP1 = SQRT( BIG / FLOAT( N ) )
 | |
|       IF( ( AAPP.LE.SN ) .OR. ( AAQQ.GE.TEMP1 ) .OR.
 | |
|      $    ( ( SN.LE.AAQQ ) .AND. ( AAPP.LE.TEMP1 ) ) ) THEN
 | |
|          TEMP1 = AMIN1( BIG, TEMP1 / AAPP )
 | |
| *         AAQQ  = AAQQ*TEMP1
 | |
| *         AAPP  = AAPP*TEMP1
 | |
|       ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.LE.TEMP1 ) ) THEN
 | |
|          TEMP1 = AMIN1( SN / AAQQ, BIG / ( AAPP*SQRT( FLOAT( N ) ) ) )
 | |
| *         AAQQ  = AAQQ*TEMP1
 | |
| *         AAPP  = AAPP*TEMP1
 | |
|       ELSE IF( ( AAQQ.GE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
 | |
|          TEMP1 = AMAX1( SN / AAQQ, TEMP1 / AAPP )
 | |
| *         AAQQ  = AAQQ*TEMP1
 | |
| *         AAPP  = AAPP*TEMP1
 | |
|       ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
 | |
|          TEMP1 = AMIN1( SN / AAQQ, BIG / ( SQRT( FLOAT( N ) )*AAPP ) )
 | |
| *         AAQQ  = AAQQ*TEMP1
 | |
| *         AAPP  = AAPP*TEMP1
 | |
|       ELSE
 | |
|          TEMP1 = ONE
 | |
|       END IF
 | |
| *
 | |
| *     Scale, if necessary
 | |
| *
 | |
|       IF( TEMP1.NE.ONE ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, ONE, TEMP1, N, 1, SVA, N, IERR )
 | |
|       END IF
 | |
|       SKL = TEMP1*SKL
 | |
|       IF( SKL.NE.ONE ) THEN
 | |
|          CALL SLASCL( JOBA, 0, 0, ONE, SKL, M, N, A, LDA, IERR )
 | |
|          SKL = ONE / SKL
 | |
|       END IF
 | |
| *
 | |
| *     Row-cyclic Jacobi SVD algorithm with column pivoting
 | |
| *
 | |
|       EMPTSW = ( N*( N-1 ) ) / 2
 | |
|       NOTROT = 0
 | |
|       FASTR( 1 ) = ZERO
 | |
| *
 | |
| *     A is represented in factored form A = A * diag(WORK), where diag(WORK)
 | |
| *     is initialized to identity. WORK is updated during fast scaled
 | |
| *     rotations.
 | |
| *
 | |
|       DO 1868 q = 1, N
 | |
|          WORK( q ) = ONE
 | |
|  1868 CONTINUE
 | |
| *
 | |
| *
 | |
|       SWBAND = 3
 | |
| *[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
 | |
| *     if SGESVJ is used as a computational routine in the preconditioned
 | |
| *     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
 | |
| *     works on pivots inside a band-like region around the diagonal.
 | |
| *     The boundaries are determined dynamically, based on the number of
 | |
| *     pivots above a threshold.
 | |
| *
 | |
|       KBL = MIN0( 8, N )
 | |
| *[TP] KBL is a tuning parameter that defines the tile size in the
 | |
| *     tiling of the p-q loops of pivot pairs. In general, an optimal
 | |
| *     value of KBL depends on the matrix dimensions and on the
 | |
| *     parameters of the computer's memory.
 | |
| *
 | |
|       NBL = N / KBL
 | |
|       IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
 | |
| *
 | |
|       BLSKIP = KBL**2
 | |
| *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
 | |
| *
 | |
|       ROWSKIP = MIN0( 5, KBL )
 | |
| *[TP] ROWSKIP is a tuning parameter.
 | |
| *
 | |
|       LKAHEAD = 1
 | |
| *[TP] LKAHEAD is a tuning parameter.
 | |
| *
 | |
| *     Quasi block transformations, using the lower (upper) triangular
 | |
| *     structure of the input matrix. The quasi-block-cycling usually
 | |
| *     invokes cubic convergence. Big part of this cycle is done inside
 | |
| *     canonical subspaces of dimensions less than M.
 | |
| *
 | |
|       IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX0( 64, 4*KBL ) ) ) THEN
 | |
| *[TP] The number of partition levels and the actual partition are
 | |
| *     tuning parameters.
 | |
|          N4 = N / 4
 | |
|          N2 = N / 2
 | |
|          N34 = 3*N4
 | |
|          IF( APPLV ) THEN
 | |
|             q = 0
 | |
|          ELSE
 | |
|             q = 1
 | |
|          END IF
 | |
| *
 | |
|          IF( LOWER ) THEN
 | |
| *
 | |
| *     This works very well on lower triangular matrices, in particular
 | |
| *     in the framework of the preconditioned Jacobi SVD (xGEJSV).
 | |
| *     The idea is simple:
 | |
| *     [+ 0 0 0]   Note that Jacobi transformations of [0 0]
 | |
| *     [+ + 0 0]                                       [0 0]
 | |
| *     [+ + x 0]   actually work on [x 0]              [x 0]
 | |
| *     [+ + x x]                    [x x].             [x x]
 | |
| *
 | |
|             CALL SGSVJ0( JOBV, M-N34, N-N34, A( N34+1, N34+1 ), LDA,
 | |
|      $                   WORK( N34+1 ), SVA( N34+1 ), MVL,
 | |
|      $                   V( N34*q+1, N34+1 ), LDV, EPSLN, SFMIN, TOL,
 | |
|      $                   2, WORK( N+1 ), LWORK-N, IERR )
 | |
| *
 | |
|             CALL SGSVJ0( JOBV, M-N2, N34-N2, A( N2+1, N2+1 ), LDA,
 | |
|      $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
 | |
|      $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 2,
 | |
|      $                   WORK( N+1 ), LWORK-N, IERR )
 | |
| *
 | |
|             CALL SGSVJ1( JOBV, M-N2, N-N2, N4, A( N2+1, N2+1 ), LDA,
 | |
|      $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
 | |
|      $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
 | |
|      $                   WORK( N+1 ), LWORK-N, IERR )
 | |
| *
 | |
|             CALL SGSVJ0( JOBV, M-N4, N2-N4, A( N4+1, N4+1 ), LDA,
 | |
|      $                   WORK( N4+1 ), SVA( N4+1 ), MVL,
 | |
|      $                   V( N4*q+1, N4+1 ), LDV, EPSLN, SFMIN, TOL, 1,
 | |
|      $                   WORK( N+1 ), LWORK-N, IERR )
 | |
| *
 | |
|             CALL SGSVJ0( JOBV, M, N4, A, LDA, WORK, SVA, MVL, V, LDV,
 | |
|      $                   EPSLN, SFMIN, TOL, 1, WORK( N+1 ), LWORK-N,
 | |
|      $                   IERR )
 | |
| *
 | |
|             CALL SGSVJ1( JOBV, M, N2, N4, A, LDA, WORK, SVA, MVL, V,
 | |
|      $                   LDV, EPSLN, SFMIN, TOL, 1, WORK( N+1 ),
 | |
|      $                   LWORK-N, IERR )
 | |
| *
 | |
| *
 | |
|          ELSE IF( UPPER ) THEN
 | |
| *
 | |
| *
 | |
|             CALL SGSVJ0( JOBV, N4, N4, A, LDA, WORK, SVA, MVL, V, LDV,
 | |
|      $                   EPSLN, SFMIN, TOL, 2, WORK( N+1 ), LWORK-N,
 | |
|      $                   IERR )
 | |
| *
 | |
|             CALL SGSVJ0( JOBV, N2, N4, A( 1, N4+1 ), LDA, WORK( N4+1 ),
 | |
|      $                   SVA( N4+1 ), MVL, V( N4*q+1, N4+1 ), LDV,
 | |
|      $                   EPSLN, SFMIN, TOL, 1, WORK( N+1 ), LWORK-N,
 | |
|      $                   IERR )
 | |
| *
 | |
|             CALL SGSVJ1( JOBV, N2, N2, N4, A, LDA, WORK, SVA, MVL, V,
 | |
|      $                   LDV, EPSLN, SFMIN, TOL, 1, WORK( N+1 ),
 | |
|      $                   LWORK-N, IERR )
 | |
| *
 | |
|             CALL SGSVJ0( JOBV, N2+N4, N4, A( 1, N2+1 ), LDA,
 | |
|      $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
 | |
|      $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
 | |
|      $                   WORK( N+1 ), LWORK-N, IERR )
 | |
| 
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
 | |
| *
 | |
|       DO 1993 i = 1, NSWEEP
 | |
| *
 | |
| *     .. go go go ...
 | |
| *
 | |
|          MXAAPQ = ZERO
 | |
|          MXSINJ = ZERO
 | |
|          ISWROT = 0
 | |
| *
 | |
|          NOTROT = 0
 | |
|          PSKIPPED = 0
 | |
| *
 | |
| *     Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
 | |
| *     1 <= p < q <= N. This is the first step toward a blocked implementation
 | |
| *     of the rotations. New implementation, based on block transformations,
 | |
| *     is under development.
 | |
| *
 | |
|          DO 2000 ibr = 1, NBL
 | |
| *
 | |
|             igl = ( ibr-1 )*KBL + 1
 | |
| *
 | |
|             DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
 | |
| *
 | |
|                igl = igl + ir1*KBL
 | |
| *
 | |
|                DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
 | |
| *
 | |
| *     .. de Rijk's pivoting
 | |
| *
 | |
|                   q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | |
|                   IF( p.NE.q ) THEN
 | |
|                      CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | |
|                      IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
 | |
|      $                                      V( 1, q ), 1 )
 | |
|                      TEMP1 = SVA( p )
 | |
|                      SVA( p ) = SVA( q )
 | |
|                      SVA( q ) = TEMP1
 | |
|                      TEMP1 = WORK( p )
 | |
|                      WORK( p ) = WORK( q )
 | |
|                      WORK( q ) = TEMP1
 | |
|                   END IF
 | |
| *
 | |
|                   IF( ir1.EQ.0 ) THEN
 | |
| *
 | |
| *        Column norms are periodically updated by explicit
 | |
| *        norm computation.
 | |
| *        Caveat:
 | |
| *        Unfortunately, some BLAS implementations compute SNRM2(M,A(1,p),1)
 | |
| *        as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may cause the result to
 | |
| *        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
 | |
| *        underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
 | |
| *        Hence, SNRM2 cannot be trusted, not even in the case when
 | |
| *        the true norm is far from the under(over)flow boundaries.
 | |
| *        If properly implemented SNRM2 is available, the IF-THEN-ELSE
 | |
| *        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * WORK(p)".
 | |
| *
 | |
|                      IF( ( SVA( p ).LT.ROOTBIG ) .AND.
 | |
|      $                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
 | |
|                         SVA( p ) = SNRM2( M, A( 1, p ), 1 )*WORK( p )
 | |
|                      ELSE
 | |
|                         TEMP1 = ZERO
 | |
|                         AAPP = ONE
 | |
|                         CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
 | |
|                         SVA( p ) = TEMP1*SQRT( AAPP )*WORK( p )
 | |
|                      END IF
 | |
|                      AAPP = SVA( p )
 | |
|                   ELSE
 | |
|                      AAPP = SVA( p )
 | |
|                   END IF
 | |
| *
 | |
|                   IF( AAPP.GT.ZERO ) THEN
 | |
| *
 | |
|                      PSKIPPED = 0
 | |
| *
 | |
|                      DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
 | |
| *
 | |
|                         AAQQ = SVA( q )
 | |
| *
 | |
|                         IF( AAQQ.GT.ZERO ) THEN
 | |
| *
 | |
|                            AAPP0 = AAPP
 | |
|                            IF( AAQQ.GE.ONE ) THEN
 | |
|                               ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | |
|                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
 | |
|      $                                  q ), 1 )*WORK( p )*WORK( q ) /
 | |
|      $                                  AAQQ ) / AAPP
 | |
|                               ELSE
 | |
|                                  CALL SCOPY( M, A( 1, p ), 1,
 | |
|      $                                       WORK( N+1 ), 1 )
 | |
|                                  CALL SLASCL( 'G', 0, 0, AAPP,
 | |
|      $                                        WORK( p ), M, 1,
 | |
|      $                                        WORK( N+1 ), LDA, IERR )
 | |
|                                  AAPQ = SDOT( M, WORK( N+1 ), 1,
 | |
|      $                                  A( 1, q ), 1 )*WORK( q ) / AAQQ
 | |
|                               END IF
 | |
|                            ELSE
 | |
|                               ROTOK = AAPP.LE.( AAQQ / SMALL )
 | |
|                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
 | |
|      $                                  q ), 1 )*WORK( p )*WORK( q ) /
 | |
|      $                                  AAQQ ) / AAPP
 | |
|                               ELSE
 | |
|                                  CALL SCOPY( M, A( 1, q ), 1,
 | |
|      $                                       WORK( N+1 ), 1 )
 | |
|                                  CALL SLASCL( 'G', 0, 0, AAQQ,
 | |
|      $                                        WORK( q ), M, 1,
 | |
|      $                                        WORK( N+1 ), LDA, IERR )
 | |
|                                  AAPQ = SDOT( M, WORK( N+1 ), 1,
 | |
|      $                                  A( 1, p ), 1 )*WORK( p ) / AAPP
 | |
|                               END IF
 | |
|                            END IF
 | |
| *
 | |
|                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
 | |
| *
 | |
| *        TO rotate or NOT to rotate, THAT is the question ...
 | |
| *
 | |
|                            IF( ABS( AAPQ ).GT.TOL ) THEN
 | |
| *
 | |
| *           .. rotate
 | |
| *[RTD]      ROTATED = ROTATED + ONE
 | |
| *
 | |
|                               IF( ir1.EQ.0 ) THEN
 | |
|                                  NOTROT = 0
 | |
|                                  PSKIPPED = 0
 | |
|                                  ISWROT = ISWROT + 1
 | |
|                               END IF
 | |
| *
 | |
|                               IF( ROTOK ) THEN
 | |
| *
 | |
|                                  AQOAP = AAQQ / AAPP
 | |
|                                  APOAQ = AAPP / AAQQ
 | |
|                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
 | |
| *
 | |
|                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
 | |
| *
 | |
|                                     T = HALF / THETA
 | |
|                                     FASTR( 3 ) = T*WORK( p ) / WORK( q )
 | |
|                                     FASTR( 4 ) = -T*WORK( q ) /
 | |
|      $                                           WORK( p )
 | |
|                                     CALL SROTM( M, A( 1, p ), 1,
 | |
|      $                                          A( 1, q ), 1, FASTR )
 | |
|                                     IF( RSVEC )CALL SROTM( MVL,
 | |
|      $                                              V( 1, p ), 1,
 | |
|      $                                              V( 1, q ), 1,
 | |
|      $                                              FASTR )
 | |
|                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | |
|      $                                         ONE+T*APOAQ*AAPQ ) )
 | |
|                                     AAPP = AAPP*SQRT( AMAX1( ZERO, 
 | |
|      $                                         ONE-T*AQOAP*AAPQ ) )
 | |
|                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
 | |
| *
 | |
|                                  ELSE
 | |
| *
 | |
| *                 .. choose correct signum for THETA and rotate
 | |
| *
 | |
|                                     THSIGN = -SIGN( ONE, AAPQ )
 | |
|                                     T = ONE / ( THETA+THSIGN*
 | |
|      $                                  SQRT( ONE+THETA*THETA ) )
 | |
|                                     CS = SQRT( ONE / ( ONE+T*T ) )
 | |
|                                     SN = T*CS
 | |
| *
 | |
|                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
 | |
|                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | |
|      $                                         ONE+T*APOAQ*AAPQ ) )
 | |
|                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
 | |
|      $                                     ONE-T*AQOAP*AAPQ ) )
 | |
| *
 | |
|                                     APOAQ = WORK( p ) / WORK( q )
 | |
|                                     AQOAP = WORK( q ) / WORK( p )
 | |
|                                     IF( WORK( p ).GE.ONE ) THEN
 | |
|                                        IF( WORK( q ).GE.ONE ) THEN
 | |
|                                           FASTR( 3 ) = T*APOAQ
 | |
|                                           FASTR( 4 ) = -T*AQOAP
 | |
|                                           WORK( p ) = WORK( p )*CS
 | |
|                                           WORK( q ) = WORK( q )*CS
 | |
|                                           CALL SROTM( M, A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                FASTR )
 | |
|                                           IF( RSVEC )CALL SROTM( MVL,
 | |
|      $                                        V( 1, p ), 1, V( 1, q ),
 | |
|      $                                        1, FASTR )
 | |
|                                        ELSE
 | |
|                                           CALL SAXPY( M, -T*AQOAP,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                A( 1, p ), 1 )
 | |
|                                           CALL SAXPY( M, CS*SN*APOAQ,
 | |
|      $                                                A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1 )
 | |
|                                           WORK( p ) = WORK( p )*CS
 | |
|                                           WORK( q ) = WORK( q ) / CS
 | |
|                                           IF( RSVEC ) THEN
 | |
|                                              CALL SAXPY( MVL, -T*AQOAP,
 | |
|      $                                                   V( 1, q ), 1,
 | |
|      $                                                   V( 1, p ), 1 )
 | |
|                                              CALL SAXPY( MVL,
 | |
|      $                                                   CS*SN*APOAQ,
 | |
|      $                                                   V( 1, p ), 1,
 | |
|      $                                                   V( 1, q ), 1 )
 | |
|                                           END IF
 | |
|                                        END IF
 | |
|                                     ELSE
 | |
|                                        IF( WORK( q ).GE.ONE ) THEN
 | |
|                                           CALL SAXPY( M, T*APOAQ,
 | |
|      $                                                A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1 )
 | |
|                                           CALL SAXPY( M, -CS*SN*AQOAP,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                A( 1, p ), 1 )
 | |
|                                           WORK( p ) = WORK( p ) / CS
 | |
|                                           WORK( q ) = WORK( q )*CS
 | |
|                                           IF( RSVEC ) THEN
 | |
|                                              CALL SAXPY( MVL, T*APOAQ,
 | |
|      $                                                   V( 1, p ), 1,
 | |
|      $                                                   V( 1, q ), 1 )
 | |
|                                              CALL SAXPY( MVL,
 | |
|      $                                                   -CS*SN*AQOAP,
 | |
|      $                                                   V( 1, q ), 1,
 | |
|      $                                                   V( 1, p ), 1 )
 | |
|                                           END IF
 | |
|                                        ELSE
 | |
|                                           IF( WORK( p ).GE.WORK( q ) )
 | |
|      $                                        THEN
 | |
|                                              CALL SAXPY( M, -T*AQOAP,
 | |
|      $                                                   A( 1, q ), 1,
 | |
|      $                                                   A( 1, p ), 1 )
 | |
|                                              CALL SAXPY( M, CS*SN*APOAQ,
 | |
|      $                                                   A( 1, p ), 1,
 | |
|      $                                                   A( 1, q ), 1 )
 | |
|                                              WORK( p ) = WORK( p )*CS
 | |
|                                              WORK( q ) = WORK( q ) / CS
 | |
|                                              IF( RSVEC ) THEN
 | |
|                                                 CALL SAXPY( MVL,
 | |
|      $                                               -T*AQOAP,
 | |
|      $                                               V( 1, q ), 1,
 | |
|      $                                               V( 1, p ), 1 )
 | |
|                                                 CALL SAXPY( MVL,
 | |
|      $                                               CS*SN*APOAQ,
 | |
|      $                                               V( 1, p ), 1,
 | |
|      $                                               V( 1, q ), 1 )
 | |
|                                              END IF
 | |
|                                           ELSE
 | |
|                                              CALL SAXPY( M, T*APOAQ,
 | |
|      $                                                   A( 1, p ), 1,
 | |
|      $                                                   A( 1, q ), 1 )
 | |
|                                              CALL SAXPY( M,
 | |
|      $                                                   -CS*SN*AQOAP,
 | |
|      $                                                   A( 1, q ), 1,
 | |
|      $                                                   A( 1, p ), 1 )
 | |
|                                              WORK( p ) = WORK( p ) / CS
 | |
|                                              WORK( q ) = WORK( q )*CS
 | |
|                                              IF( RSVEC ) THEN
 | |
|                                                 CALL SAXPY( MVL,
 | |
|      $                                               T*APOAQ, V( 1, p ),
 | |
|      $                                               1, V( 1, q ), 1 )
 | |
|                                                 CALL SAXPY( MVL,
 | |
|      $                                               -CS*SN*AQOAP,
 | |
|      $                                               V( 1, q ), 1,
 | |
|      $                                               V( 1, p ), 1 )
 | |
|                                              END IF
 | |
|                                           END IF
 | |
|                                        END IF
 | |
|                                     END IF
 | |
|                                  END IF
 | |
| *
 | |
|                               ELSE
 | |
| *              .. have to use modified Gram-Schmidt like transformation
 | |
|                                  CALL SCOPY( M, A( 1, p ), 1,
 | |
|      $                                       WORK( N+1 ), 1 )
 | |
|                                  CALL SLASCL( 'G', 0, 0, AAPP, ONE, M,
 | |
|      $                                        1, WORK( N+1 ), LDA,
 | |
|      $                                        IERR )
 | |
|                                  CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M,
 | |
|      $                                        1, A( 1, q ), LDA, IERR )
 | |
|                                  TEMP1 = -AAPQ*WORK( p ) / WORK( q )
 | |
|                                  CALL SAXPY( M, TEMP1, WORK( N+1 ), 1,
 | |
|      $                                       A( 1, q ), 1 )
 | |
|                                  CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M,
 | |
|      $                                        1, A( 1, q ), LDA, IERR )
 | |
|                                  SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | |
|      $                                      ONE-AAPQ*AAPQ ) )
 | |
|                                  MXSINJ = AMAX1( MXSINJ, SFMIN )
 | |
|                               END IF
 | |
| *           END IF ROTOK THEN ... ELSE
 | |
| *
 | |
| *           In the case of cancellation in updating SVA(q), SVA(p)
 | |
| *           recompute SVA(q), SVA(p).
 | |
| *
 | |
|                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | |
|      $                            THEN
 | |
|                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | |
|                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
 | |
|      $                                         WORK( q )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAQQ = ONE
 | |
|                                     CALL SLASSQ( M, A( 1, q ), 1, T,
 | |
|      $                                           AAQQ )
 | |
|                                     SVA( q ) = T*SQRT( AAQQ )*WORK( q )
 | |
|                                  END IF
 | |
|                               END IF
 | |
|                               IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
 | |
|                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | |
|                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
 | |
|      $                                     WORK( p )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAPP = ONE
 | |
|                                     CALL SLASSQ( M, A( 1, p ), 1, T,
 | |
|      $                                           AAPP )
 | |
|                                     AAPP = T*SQRT( AAPP )*WORK( p )
 | |
|                                  END IF
 | |
|                                  SVA( p ) = AAPP
 | |
|                               END IF
 | |
| *
 | |
|                            ELSE
 | |
| *        A(:,p) and A(:,q) already numerically orthogonal
 | |
|                               IF( ir1.EQ.0 )NOTROT = NOTROT + 1
 | |
| *[RTD]      SKIPPED  = SKIPPED  + 1
 | |
|                               PSKIPPED = PSKIPPED + 1
 | |
|                            END IF
 | |
|                         ELSE
 | |
| *        A(:,q) is zero column
 | |
|                            IF( ir1.EQ.0 )NOTROT = NOTROT + 1
 | |
|                            PSKIPPED = PSKIPPED + 1
 | |
|                         END IF
 | |
| *
 | |
|                         IF( ( i.LE.SWBAND ) .AND.
 | |
|      $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | |
|                            IF( ir1.EQ.0 )AAPP = -AAPP
 | |
|                            NOTROT = 0
 | |
|                            GO TO 2103
 | |
|                         END IF
 | |
| *
 | |
|  2002                CONTINUE
 | |
| *     END q-LOOP
 | |
| *
 | |
|  2103                CONTINUE
 | |
| *     bailed out of q-loop
 | |
| *
 | |
|                      SVA( p ) = AAPP
 | |
| *
 | |
|                   ELSE
 | |
|                      SVA( p ) = AAPP
 | |
|                      IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
 | |
|      $                   NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
 | |
|                   END IF
 | |
| *
 | |
|  2001          CONTINUE
 | |
| *     end of the p-loop
 | |
| *     end of doing the block ( ibr, ibr )
 | |
|  1002       CONTINUE
 | |
| *     end of ir1-loop
 | |
| *
 | |
| * ... go to the off diagonal blocks
 | |
| *
 | |
|             igl = ( ibr-1 )*KBL + 1
 | |
| *
 | |
|             DO 2010 jbc = ibr + 1, NBL
 | |
| *
 | |
|                jgl = ( jbc-1 )*KBL + 1
 | |
| *
 | |
| *        doing the block at ( ibr, jbc )
 | |
| *
 | |
|                IJBLSK = 0
 | |
|                DO 2100 p = igl, MIN0( igl+KBL-1, N )
 | |
| *
 | |
|                   AAPP = SVA( p )
 | |
|                   IF( AAPP.GT.ZERO ) THEN
 | |
| *
 | |
|                      PSKIPPED = 0
 | |
| *
 | |
|                      DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
 | |
| *
 | |
|                         AAQQ = SVA( q )
 | |
|                         IF( AAQQ.GT.ZERO ) THEN
 | |
|                            AAPP0 = AAPP
 | |
| *
 | |
| *     .. M x 2 Jacobi SVD ..
 | |
| *
 | |
| *        Safe Gram matrix computation
 | |
| *
 | |
|                            IF( AAQQ.GE.ONE ) THEN
 | |
|                               IF( AAPP.GE.AAQQ ) THEN
 | |
|                                  ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | |
|                               ELSE
 | |
|                                  ROTOK = ( SMALL*AAQQ ).LE.AAPP
 | |
|                               END IF
 | |
|                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
 | |
|      $                                  q ), 1 )*WORK( p )*WORK( q ) /
 | |
|      $                                  AAQQ ) / AAPP
 | |
|                               ELSE
 | |
|                                  CALL SCOPY( M, A( 1, p ), 1,
 | |
|      $                                       WORK( N+1 ), 1 )
 | |
|                                  CALL SLASCL( 'G', 0, 0, AAPP,
 | |
|      $                                        WORK( p ), M, 1,
 | |
|      $                                        WORK( N+1 ), LDA, IERR )
 | |
|                                  AAPQ = SDOT( M, WORK( N+1 ), 1,
 | |
|      $                                  A( 1, q ), 1 )*WORK( q ) / AAQQ
 | |
|                               END IF
 | |
|                            ELSE
 | |
|                               IF( AAPP.GE.AAQQ ) THEN
 | |
|                                  ROTOK = AAPP.LE.( AAQQ / SMALL )
 | |
|                               ELSE
 | |
|                                  ROTOK = AAQQ.LE.( AAPP / SMALL )
 | |
|                               END IF
 | |
|                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
 | |
|      $                                  q ), 1 )*WORK( p )*WORK( q ) /
 | |
|      $                                  AAQQ ) / AAPP
 | |
|                               ELSE
 | |
|                                  CALL SCOPY( M, A( 1, q ), 1,
 | |
|      $                                       WORK( N+1 ), 1 )
 | |
|                                  CALL SLASCL( 'G', 0, 0, AAQQ,
 | |
|      $                                        WORK( q ), M, 1,
 | |
|      $                                        WORK( N+1 ), LDA, IERR )
 | |
|                                  AAPQ = SDOT( M, WORK( N+1 ), 1,
 | |
|      $                                  A( 1, p ), 1 )*WORK( p ) / AAPP
 | |
|                               END IF
 | |
|                            END IF
 | |
| *
 | |
|                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
 | |
| *
 | |
| *        TO rotate or NOT to rotate, THAT is the question ...
 | |
| *
 | |
|                            IF( ABS( AAPQ ).GT.TOL ) THEN
 | |
|                               NOTROT = 0
 | |
| *[RTD]      ROTATED  = ROTATED + 1
 | |
|                               PSKIPPED = 0
 | |
|                               ISWROT = ISWROT + 1
 | |
| *
 | |
|                               IF( ROTOK ) THEN
 | |
| *
 | |
|                                  AQOAP = AAQQ / AAPP
 | |
|                                  APOAQ = AAPP / AAQQ
 | |
|                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
 | |
|                                  IF( AAQQ.GT.AAPP0 )THETA = -THETA
 | |
| *
 | |
|                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
 | |
|                                     T = HALF / THETA
 | |
|                                     FASTR( 3 ) = T*WORK( p ) / WORK( q )
 | |
|                                     FASTR( 4 ) = -T*WORK( q ) /
 | |
|      $                                           WORK( p )
 | |
|                                     CALL SROTM( M, A( 1, p ), 1,
 | |
|      $                                          A( 1, q ), 1, FASTR )
 | |
|                                     IF( RSVEC )CALL SROTM( MVL,
 | |
|      $                                              V( 1, p ), 1,
 | |
|      $                                              V( 1, q ), 1,
 | |
|      $                                              FASTR )
 | |
|                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | |
|      $                                         ONE+T*APOAQ*AAPQ ) )
 | |
|                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
 | |
|      $                                     ONE-T*AQOAP*AAPQ ) )
 | |
|                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
 | |
|                                  ELSE
 | |
| *
 | |
| *                 .. choose correct signum for THETA and rotate
 | |
| *
 | |
|                                     THSIGN = -SIGN( ONE, AAPQ )
 | |
|                                     IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
 | |
|                                     T = ONE / ( THETA+THSIGN*
 | |
|      $                                  SQRT( ONE+THETA*THETA ) )
 | |
|                                     CS = SQRT( ONE / ( ONE+T*T ) )
 | |
|                                     SN = T*CS
 | |
|                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
 | |
|                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | |
|      $                                         ONE+T*APOAQ*AAPQ ) )
 | |
|                                     AAPP = AAPP*SQRT( AMAX1( ZERO,  
 | |
|      $                                         ONE-T*AQOAP*AAPQ ) )
 | |
| *
 | |
|                                     APOAQ = WORK( p ) / WORK( q )
 | |
|                                     AQOAP = WORK( q ) / WORK( p )
 | |
|                                     IF( WORK( p ).GE.ONE ) THEN
 | |
| *
 | |
|                                        IF( WORK( q ).GE.ONE ) THEN
 | |
|                                           FASTR( 3 ) = T*APOAQ
 | |
|                                           FASTR( 4 ) = -T*AQOAP
 | |
|                                           WORK( p ) = WORK( p )*CS
 | |
|                                           WORK( q ) = WORK( q )*CS
 | |
|                                           CALL SROTM( M, A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                FASTR )
 | |
|                                           IF( RSVEC )CALL SROTM( MVL,
 | |
|      $                                        V( 1, p ), 1, V( 1, q ),
 | |
|      $                                        1, FASTR )
 | |
|                                        ELSE
 | |
|                                           CALL SAXPY( M, -T*AQOAP,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                A( 1, p ), 1 )
 | |
|                                           CALL SAXPY( M, CS*SN*APOAQ,
 | |
|      $                                                A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1 )
 | |
|                                           IF( RSVEC ) THEN
 | |
|                                              CALL SAXPY( MVL, -T*AQOAP,
 | |
|      $                                                   V( 1, q ), 1,
 | |
|      $                                                   V( 1, p ), 1 )
 | |
|                                              CALL SAXPY( MVL,
 | |
|      $                                                   CS*SN*APOAQ,
 | |
|      $                                                   V( 1, p ), 1,
 | |
|      $                                                   V( 1, q ), 1 )
 | |
|                                           END IF
 | |
|                                           WORK( p ) = WORK( p )*CS
 | |
|                                           WORK( q ) = WORK( q ) / CS
 | |
|                                        END IF
 | |
|                                     ELSE
 | |
|                                        IF( WORK( q ).GE.ONE ) THEN
 | |
|                                           CALL SAXPY( M, T*APOAQ,
 | |
|      $                                                A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1 )
 | |
|                                           CALL SAXPY( M, -CS*SN*AQOAP,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                A( 1, p ), 1 )
 | |
|                                           IF( RSVEC ) THEN
 | |
|                                              CALL SAXPY( MVL, T*APOAQ,
 | |
|      $                                                   V( 1, p ), 1,
 | |
|      $                                                   V( 1, q ), 1 )
 | |
|                                              CALL SAXPY( MVL,
 | |
|      $                                                   -CS*SN*AQOAP,
 | |
|      $                                                   V( 1, q ), 1,
 | |
|      $                                                   V( 1, p ), 1 )
 | |
|                                           END IF
 | |
|                                           WORK( p ) = WORK( p ) / CS
 | |
|                                           WORK( q ) = WORK( q )*CS
 | |
|                                        ELSE
 | |
|                                           IF( WORK( p ).GE.WORK( q ) )
 | |
|      $                                        THEN
 | |
|                                              CALL SAXPY( M, -T*AQOAP,
 | |
|      $                                                   A( 1, q ), 1,
 | |
|      $                                                   A( 1, p ), 1 )
 | |
|                                              CALL SAXPY( M, CS*SN*APOAQ,
 | |
|      $                                                   A( 1, p ), 1,
 | |
|      $                                                   A( 1, q ), 1 )
 | |
|                                              WORK( p ) = WORK( p )*CS
 | |
|                                              WORK( q ) = WORK( q ) / CS
 | |
|                                              IF( RSVEC ) THEN
 | |
|                                                 CALL SAXPY( MVL,
 | |
|      $                                               -T*AQOAP,
 | |
|      $                                               V( 1, q ), 1,
 | |
|      $                                               V( 1, p ), 1 )
 | |
|                                                 CALL SAXPY( MVL,
 | |
|      $                                               CS*SN*APOAQ,
 | |
|      $                                               V( 1, p ), 1,
 | |
|      $                                               V( 1, q ), 1 )
 | |
|                                              END IF
 | |
|                                           ELSE
 | |
|                                              CALL SAXPY( M, T*APOAQ,
 | |
|      $                                                   A( 1, p ), 1,
 | |
|      $                                                   A( 1, q ), 1 )
 | |
|                                              CALL SAXPY( M,
 | |
|      $                                                   -CS*SN*AQOAP,
 | |
|      $                                                   A( 1, q ), 1,
 | |
|      $                                                   A( 1, p ), 1 )
 | |
|                                              WORK( p ) = WORK( p ) / CS
 | |
|                                              WORK( q ) = WORK( q )*CS
 | |
|                                              IF( RSVEC ) THEN
 | |
|                                                 CALL SAXPY( MVL,
 | |
|      $                                               T*APOAQ, V( 1, p ),
 | |
|      $                                               1, V( 1, q ), 1 )
 | |
|                                                 CALL SAXPY( MVL,
 | |
|      $                                               -CS*SN*AQOAP,
 | |
|      $                                               V( 1, q ), 1,
 | |
|      $                                               V( 1, p ), 1 )
 | |
|                                              END IF
 | |
|                                           END IF
 | |
|                                        END IF
 | |
|                                     END IF
 | |
|                                  END IF
 | |
| *
 | |
|                               ELSE
 | |
|                                  IF( AAPP.GT.AAQQ ) THEN
 | |
|                                     CALL SCOPY( M, A( 1, p ), 1,
 | |
|      $                                          WORK( N+1 ), 1 )
 | |
|                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
 | |
|      $                                           M, 1, WORK( N+1 ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
 | |
|      $                                           M, 1, A( 1, q ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     TEMP1 = -AAPQ*WORK( p ) / WORK( q )
 | |
|                                     CALL SAXPY( M, TEMP1, WORK( N+1 ),
 | |
|      $                                          1, A( 1, q ), 1 )
 | |
|                                     CALL SLASCL( 'G', 0, 0, ONE, AAQQ,
 | |
|      $                                           M, 1, A( 1, q ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | |
|      $                                         ONE-AAPQ*AAPQ ) )
 | |
|                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
 | |
|                                  ELSE
 | |
|                                     CALL SCOPY( M, A( 1, q ), 1,
 | |
|      $                                          WORK( N+1 ), 1 )
 | |
|                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
 | |
|      $                                           M, 1, WORK( N+1 ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
 | |
|      $                                           M, 1, A( 1, p ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     TEMP1 = -AAPQ*WORK( q ) / WORK( p )
 | |
|                                     CALL SAXPY( M, TEMP1, WORK( N+1 ),
 | |
|      $                                          1, A( 1, p ), 1 )
 | |
|                                     CALL SLASCL( 'G', 0, 0, ONE, AAPP,
 | |
|      $                                           M, 1, A( 1, p ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
 | |
|      $                                         ONE-AAPQ*AAPQ ) )
 | |
|                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
 | |
|                                  END IF
 | |
|                               END IF
 | |
| *           END IF ROTOK THEN ... ELSE
 | |
| *
 | |
| *           In the case of cancellation in updating SVA(q)
 | |
| *           .. recompute SVA(q)
 | |
|                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | |
|      $                            THEN
 | |
|                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | |
|                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
 | |
|      $                                         WORK( q )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAQQ = ONE
 | |
|                                     CALL SLASSQ( M, A( 1, q ), 1, T,
 | |
|      $                                           AAQQ )
 | |
|                                     SVA( q ) = T*SQRT( AAQQ )*WORK( q )
 | |
|                                  END IF
 | |
|                               END IF
 | |
|                               IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
 | |
|                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | |
|                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
 | |
|      $                                     WORK( p )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAPP = ONE
 | |
|                                     CALL SLASSQ( M, A( 1, p ), 1, T,
 | |
|      $                                           AAPP )
 | |
|                                     AAPP = T*SQRT( AAPP )*WORK( p )
 | |
|                                  END IF
 | |
|                                  SVA( p ) = AAPP
 | |
|                               END IF
 | |
| *              end of OK rotation
 | |
|                            ELSE
 | |
|                               NOTROT = NOTROT + 1
 | |
| *[RTD]      SKIPPED  = SKIPPED  + 1
 | |
|                               PSKIPPED = PSKIPPED + 1
 | |
|                               IJBLSK = IJBLSK + 1
 | |
|                            END IF
 | |
|                         ELSE
 | |
|                            NOTROT = NOTROT + 1
 | |
|                            PSKIPPED = PSKIPPED + 1
 | |
|                            IJBLSK = IJBLSK + 1
 | |
|                         END IF
 | |
| *
 | |
|                         IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
 | |
|      $                      THEN
 | |
|                            SVA( p ) = AAPP
 | |
|                            NOTROT = 0
 | |
|                            GO TO 2011
 | |
|                         END IF
 | |
|                         IF( ( i.LE.SWBAND ) .AND.
 | |
|      $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | |
|                            AAPP = -AAPP
 | |
|                            NOTROT = 0
 | |
|                            GO TO 2203
 | |
|                         END IF
 | |
| *
 | |
|  2200                CONTINUE
 | |
| *        end of the q-loop
 | |
|  2203                CONTINUE
 | |
| *
 | |
|                      SVA( p ) = AAPP
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
|                      IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
 | |
|      $                   MIN0( jgl+KBL-1, N ) - jgl + 1
 | |
|                      IF( AAPP.LT.ZERO )NOTROT = 0
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|  2100          CONTINUE
 | |
| *     end of the p-loop
 | |
|  2010       CONTINUE
 | |
| *     end of the jbc-loop
 | |
|  2011       CONTINUE
 | |
| *2011 bailed out of the jbc-loop
 | |
|             DO 2012 p = igl, MIN0( igl+KBL-1, N )
 | |
|                SVA( p ) = ABS( SVA( p ) )
 | |
|  2012       CONTINUE
 | |
| ***
 | |
|  2000    CONTINUE
 | |
| *2000 :: end of the ibr-loop
 | |
| *
 | |
| *     .. update SVA(N)
 | |
|          IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
 | |
|      $       THEN
 | |
|             SVA( N ) = SNRM2( M, A( 1, N ), 1 )*WORK( N )
 | |
|          ELSE
 | |
|             T = ZERO
 | |
|             AAPP = ONE
 | |
|             CALL SLASSQ( M, A( 1, N ), 1, T, AAPP )
 | |
|             SVA( N ) = T*SQRT( AAPP )*WORK( N )
 | |
|          END IF
 | |
| *
 | |
| *     Additional steering devices
 | |
| *
 | |
|          IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
 | |
|      $       ( ISWROT.LE.N ) ) )SWBAND = i
 | |
| *
 | |
|          IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( FLOAT( N ) )*
 | |
|      $       TOL ) .AND. ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
 | |
|             GO TO 1994
 | |
|          END IF
 | |
| *
 | |
|          IF( NOTROT.GE.EMPTSW )GO TO 1994
 | |
| *
 | |
|  1993 CONTINUE
 | |
| *     end i=1:NSWEEP loop
 | |
| *
 | |
| * #:( Reaching this point means that the procedure has not converged.
 | |
|       INFO = NSWEEP - 1
 | |
|       GO TO 1995
 | |
| *
 | |
|  1994 CONTINUE
 | |
| * #:) Reaching this point means numerical convergence after the i-th
 | |
| *     sweep.
 | |
| *
 | |
|       INFO = 0
 | |
| * #:) INFO = 0 confirms successful iterations.
 | |
|  1995 CONTINUE
 | |
| *
 | |
| *     Sort the singular values and find how many are above
 | |
| *     the underflow threshold.
 | |
| *
 | |
|       N2 = 0
 | |
|       N4 = 0
 | |
|       DO 5991 p = 1, N - 1
 | |
|          q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | |
|          IF( p.NE.q ) THEN
 | |
|             TEMP1 = SVA( p )
 | |
|             SVA( p ) = SVA( q )
 | |
|             SVA( q ) = TEMP1
 | |
|             TEMP1 = WORK( p )
 | |
|             WORK( p ) = WORK( q )
 | |
|             WORK( q ) = TEMP1
 | |
|             CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | |
|             IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
 | |
|          END IF
 | |
|          IF( SVA( p ).NE.ZERO ) THEN
 | |
|             N4 = N4 + 1
 | |
|             IF( SVA( p )*SKL.GT.SFMIN )N2 = N2 + 1
 | |
|          END IF
 | |
|  5991 CONTINUE
 | |
|       IF( SVA( N ).NE.ZERO ) THEN
 | |
|          N4 = N4 + 1
 | |
|          IF( SVA( N )*SKL.GT.SFMIN )N2 = N2 + 1
 | |
|       END IF
 | |
| *
 | |
| *     Normalize the left singular vectors.
 | |
| *
 | |
|       IF( LSVEC .OR. UCTOL ) THEN
 | |
|          DO 1998 p = 1, N2
 | |
|             CALL SSCAL( M, WORK( p ) / SVA( p ), A( 1, p ), 1 )
 | |
|  1998    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Scale the product of Jacobi rotations (assemble the fast rotations).
 | |
| *
 | |
|       IF( RSVEC ) THEN
 | |
|          IF( APPLV ) THEN
 | |
|             DO 2398 p = 1, N
 | |
|                CALL SSCAL( MVL, WORK( p ), V( 1, p ), 1 )
 | |
|  2398       CONTINUE
 | |
|          ELSE
 | |
|             DO 2399 p = 1, N
 | |
|                TEMP1 = ONE / SNRM2( MVL, V( 1, p ), 1 )
 | |
|                CALL SSCAL( MVL, TEMP1, V( 1, p ), 1 )
 | |
|  2399       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling, if necessary (and possible).
 | |
|       IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG / SKL ) ) ) 
 | |
|      $    .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( MAX( N2, 1 ) ) .GT.
 | |
|      $    ( SFMIN / SKL ) ) ) ) THEN
 | |
|          DO 2400 p = 1, N
 | |
|             SVA( P ) = SKL*SVA( P )
 | |
|  2400    CONTINUE
 | |
|          SKL = ONE
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = SKL
 | |
| *     The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE
 | |
| *     then some of the singular values may overflow or underflow and
 | |
| *     the spectrum is given in this factored representation.
 | |
| *
 | |
|       WORK( 2 ) = FLOAT( N4 )
 | |
| *     N4 is the number of computed nonzero singular values of A.
 | |
| *
 | |
|       WORK( 3 ) = FLOAT( N2 )
 | |
| *     N2 is the number of singular values of A greater than SFMIN.
 | |
| *     If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers
 | |
| *     that may carry some information.
 | |
| *
 | |
|       WORK( 4 ) = FLOAT( i )
 | |
| *     i is the index of the last sweep before declaring convergence.
 | |
| *
 | |
|       WORK( 5 ) = MXAAPQ
 | |
| *     MXAAPQ is the largest absolute value of scaled pivots in the
 | |
| *     last sweep
 | |
| *
 | |
|       WORK( 6 ) = MXSINJ
 | |
| *     MXSINJ is the largest absolute value of the sines of Jacobi angles
 | |
| *     in the last sweep
 | |
| *
 | |
|       RETURN
 | |
| *     ..
 | |
| *     .. END OF SGESVJ
 | |
| *     ..
 | |
|       END
 |