694 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			694 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c__4 = 4;
 | |
| static integer c__8 = 8;
 | |
| static integer c__24 = 24;
 | |
| 
 | |
| /* > \brief \b ZLATM6 */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA, */
 | |
| /*                          BETA, WX, WY, S, DIF ) */
 | |
| 
 | |
| /*       INTEGER            LDA, LDX, LDY, N, TYPE */
 | |
| /*       COMPLEX*16         ALPHA, BETA, WX, WY */
 | |
| /*       DOUBLE PRECISION   DIF( * ), S( * ) */
 | |
| /*       COMPLEX*16         A( LDA, * ), B( LDA, * ), X( LDX, * ), */
 | |
| /*      $                   Y( LDY, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZLATM6 generates test matrices for the generalized eigenvalue */
 | |
| /* > problem, their corresponding right and left eigenvector matrices, */
 | |
| /* > and also reciprocal condition numbers for all eigenvalues and */
 | |
| /* > the reciprocal condition numbers of eigenvectors corresponding to */
 | |
| /* > the 1th and 5th eigenvalues. */
 | |
| /* > */
 | |
| /* > Test Matrices */
 | |
| /* > ============= */
 | |
| /* > */
 | |
| /* > Two kinds of test matrix pairs */
 | |
| /* >          (A, B) = inverse(YH) * (Da, Db) * inverse(X) */
 | |
| /* > are used in the tests: */
 | |
| /* > */
 | |
| /* > Type 1: */
 | |
| /* >    Da = 1+a   0    0    0    0    Db = 1   0   0   0   0 */
 | |
| /* >          0   2+a   0    0    0         0   1   0   0   0 */
 | |
| /* >          0    0   3+a   0    0         0   0   1   0   0 */
 | |
| /* >          0    0    0   4+a   0         0   0   0   1   0 */
 | |
| /* >          0    0    0    0   5+a ,      0   0   0   0   1 */
 | |
| /* > and Type 2: */
 | |
| /* >    Da = 1+i   0    0       0       0    Db = 1   0   0   0   0 */
 | |
| /* >          0   1-i   0       0       0         0   1   0   0   0 */
 | |
| /* >          0    0    1       0       0         0   0   1   0   0 */
 | |
| /* >          0    0    0 (1+a)+(1+b)i  0         0   0   0   1   0 */
 | |
| /* >          0    0    0       0 (1+a)-(1+b)i,   0   0   0   0   1 . */
 | |
| /* > */
 | |
| /* > In both cases the same inverse(YH) and inverse(X) are used to compute */
 | |
| /* > (A, B), giving the exact eigenvectors to (A,B) as (YH, X): */
 | |
| /* > */
 | |
| /* > YH:  =  1    0   -y    y   -y    X =  1   0  -x  -x   x */
 | |
| /* >         0    1   -y    y   -y         0   1   x  -x  -x */
 | |
| /* >         0    0    1    0    0         0   0   1   0   0 */
 | |
| /* >         0    0    0    1    0         0   0   0   1   0 */
 | |
| /* >         0    0    0    0    1,        0   0   0   0   1 , where */
 | |
| /* > */
 | |
| /* > a, b, x and y will have all values independently of each other. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] TYPE */
 | |
| /* > \verbatim */
 | |
| /* >          TYPE is INTEGER */
 | |
| /* >          Specifies the problem type (see further details). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          Size of the matrices A and B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA, N). */
 | |
| /* >          On exit A N-by-N is initialized according to TYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of A and of B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimension (LDA, N). */
 | |
| /* >          On exit B N-by-N is initialized according to TYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is COMPLEX*16 array, dimension (LDX, N). */
 | |
| /* >          On exit X is the N-by-N matrix of right eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >          The leading dimension of X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Y */
 | |
| /* > \verbatim */
 | |
| /* >          Y is COMPLEX*16 array, dimension (LDY, N). */
 | |
| /* >          On exit Y is the N-by-N matrix of left eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDY */
 | |
| /* > \verbatim */
 | |
| /* >          LDY is INTEGER */
 | |
| /* >          The leading dimension of Y. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is COMPLEX*16 */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is COMPLEX*16 */
 | |
| /* > \verbatim */
 | |
| /* >          Weighting constants for matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WX */
 | |
| /* > \verbatim */
 | |
| /* >          WX is COMPLEX*16 */
 | |
| /* >          Constant for right eigenvector matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WY */
 | |
| /* > \verbatim */
 | |
| /* >          WY is COMPLEX*16 */
 | |
| /* >          Constant for left eigenvector matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          S(i) is the reciprocal condition number for eigenvalue i. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DIF */
 | |
| /* > \verbatim */
 | |
| /* >          DIF is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          DIF(i) is the reciprocal condition number for eigenvector i. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16_matgen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zlatm6_(integer *type__, integer *n, doublecomplex *a, 
 | |
| 	integer *lda, doublecomplex *b, doublecomplex *x, integer *ldx, 
 | |
| 	doublecomplex *y, integer *ldy, doublecomplex *alpha, doublecomplex *
 | |
| 	beta, doublecomplex *wx, doublecomplex *wy, doublereal *s, doublereal 
 | |
| 	*dif)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, y_dim1, 
 | |
| 	    y_offset, i__1, i__2, i__3;
 | |
|     doublereal d__1, d__2;
 | |
|     doublecomplex z__1, z__2, z__3, z__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer info;
 | |
|     doublecomplex work[26];
 | |
|     integer i__, j;
 | |
|     doublecomplex z__[64]	/* was [8][8] */;
 | |
|     doublereal rwork[50];
 | |
|     extern /* Subroutine */ void zlakf2_(integer *, integer *, doublecomplex *,
 | |
| 	     integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *), zgesvd_(char *, char *, integer *, 
 | |
| 	    integer *, doublecomplex *, integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublecomplex *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Generate test problem ... */
 | |
| /*     (Da, Db) ... */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     b_dim1 = *lda;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     y_dim1 = *ldy;
 | |
|     y_offset = 1 + y_dim1 * 1;
 | |
|     y -= y_offset;
 | |
|     --s;
 | |
|     --dif;
 | |
| 
 | |
|     /* Function Body */
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	i__2 = *n;
 | |
| 	for (j = 1; j <= i__2; ++j) {
 | |
| 
 | |
| 	    if (i__ == j) {
 | |
| 		i__3 = i__ + i__ * a_dim1;
 | |
| 		z__2.r = (doublereal) i__, z__2.i = 0.;
 | |
| 		z__1.r = z__2.r + alpha->r, z__1.i = z__2.i + alpha->i;
 | |
| 		a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		i__3 = i__ + i__ * b_dim1;
 | |
| 		b[i__3].r = 1., b[i__3].i = 0.;
 | |
| 	    } else {
 | |
| 		i__3 = i__ + j * a_dim1;
 | |
| 		a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 		i__3 = i__ + j * b_dim1;
 | |
| 		b[i__3].r = 0., b[i__3].i = 0.;
 | |
| 	    }
 | |
| 
 | |
| /* L10: */
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
|     if (*type__ == 2) {
 | |
| 	i__1 = a_dim1 + 1;
 | |
| 	a[i__1].r = 1., a[i__1].i = 1.;
 | |
| 	i__1 = (a_dim1 << 1) + 2;
 | |
| 	d_cnjg(&z__1, &a[a_dim1 + 1]);
 | |
| 	a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
| 	i__1 = a_dim1 * 3 + 3;
 | |
| 	a[i__1].r = 1., a[i__1].i = 0.;
 | |
| 	i__1 = (a_dim1 << 2) + 4;
 | |
| 	z__2.r = alpha->r + 1., z__2.i = alpha->i + 0.;
 | |
| 	d__1 = z__2.r;
 | |
| 	z__3.r = beta->r + 1., z__3.i = beta->i + 0.;
 | |
| 	d__2 = z__3.r;
 | |
| 	z__1.r = d__1, z__1.i = d__2;
 | |
| 	a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
| 	i__1 = a_dim1 * 5 + 5;
 | |
| 	d_cnjg(&z__1, &a[(a_dim1 << 2) + 4]);
 | |
| 	a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
|     }
 | |
| 
 | |
| /*     Form X and Y */
 | |
| 
 | |
|     zlacpy_("F", n, n, &b[b_offset], lda, &y[y_offset], ldy);
 | |
|     i__1 = y_dim1 + 3;
 | |
|     d_cnjg(&z__2, wy);
 | |
|     z__1.r = -z__2.r, z__1.i = -z__2.i;
 | |
|     y[i__1].r = z__1.r, y[i__1].i = z__1.i;
 | |
|     i__1 = y_dim1 + 4;
 | |
|     d_cnjg(&z__1, wy);
 | |
|     y[i__1].r = z__1.r, y[i__1].i = z__1.i;
 | |
|     i__1 = y_dim1 + 5;
 | |
|     d_cnjg(&z__2, wy);
 | |
|     z__1.r = -z__2.r, z__1.i = -z__2.i;
 | |
|     y[i__1].r = z__1.r, y[i__1].i = z__1.i;
 | |
|     i__1 = (y_dim1 << 1) + 3;
 | |
|     d_cnjg(&z__2, wy);
 | |
|     z__1.r = -z__2.r, z__1.i = -z__2.i;
 | |
|     y[i__1].r = z__1.r, y[i__1].i = z__1.i;
 | |
|     i__1 = (y_dim1 << 1) + 4;
 | |
|     d_cnjg(&z__1, wy);
 | |
|     y[i__1].r = z__1.r, y[i__1].i = z__1.i;
 | |
|     i__1 = (y_dim1 << 1) + 5;
 | |
|     d_cnjg(&z__2, wy);
 | |
|     z__1.r = -z__2.r, z__1.i = -z__2.i;
 | |
|     y[i__1].r = z__1.r, y[i__1].i = z__1.i;
 | |
| 
 | |
|     zlacpy_("F", n, n, &b[b_offset], lda, &x[x_offset], ldx);
 | |
|     i__1 = x_dim1 * 3 + 1;
 | |
|     z__1.r = -wx->r, z__1.i = -wx->i;
 | |
|     x[i__1].r = z__1.r, x[i__1].i = z__1.i;
 | |
|     i__1 = (x_dim1 << 2) + 1;
 | |
|     z__1.r = -wx->r, z__1.i = -wx->i;
 | |
|     x[i__1].r = z__1.r, x[i__1].i = z__1.i;
 | |
|     i__1 = x_dim1 * 5 + 1;
 | |
|     x[i__1].r = wx->r, x[i__1].i = wx->i;
 | |
|     i__1 = x_dim1 * 3 + 2;
 | |
|     x[i__1].r = wx->r, x[i__1].i = wx->i;
 | |
|     i__1 = (x_dim1 << 2) + 2;
 | |
|     z__1.r = -wx->r, z__1.i = -wx->i;
 | |
|     x[i__1].r = z__1.r, x[i__1].i = z__1.i;
 | |
|     i__1 = x_dim1 * 5 + 2;
 | |
|     z__1.r = -wx->r, z__1.i = -wx->i;
 | |
|     x[i__1].r = z__1.r, x[i__1].i = z__1.i;
 | |
| 
 | |
| /*     Form (A, B) */
 | |
| 
 | |
|     i__1 = b_dim1 * 3 + 1;
 | |
|     z__1.r = wx->r + wy->r, z__1.i = wx->i + wy->i;
 | |
|     b[i__1].r = z__1.r, b[i__1].i = z__1.i;
 | |
|     i__1 = b_dim1 * 3 + 2;
 | |
|     z__2.r = -wx->r, z__2.i = -wx->i;
 | |
|     z__1.r = z__2.r + wy->r, z__1.i = z__2.i + wy->i;
 | |
|     b[i__1].r = z__1.r, b[i__1].i = z__1.i;
 | |
|     i__1 = (b_dim1 << 2) + 1;
 | |
|     z__1.r = wx->r - wy->r, z__1.i = wx->i - wy->i;
 | |
|     b[i__1].r = z__1.r, b[i__1].i = z__1.i;
 | |
|     i__1 = (b_dim1 << 2) + 2;
 | |
|     z__1.r = wx->r - wy->r, z__1.i = wx->i - wy->i;
 | |
|     b[i__1].r = z__1.r, b[i__1].i = z__1.i;
 | |
|     i__1 = b_dim1 * 5 + 1;
 | |
|     z__2.r = -wx->r, z__2.i = -wx->i;
 | |
|     z__1.r = z__2.r + wy->r, z__1.i = z__2.i + wy->i;
 | |
|     b[i__1].r = z__1.r, b[i__1].i = z__1.i;
 | |
|     i__1 = b_dim1 * 5 + 2;
 | |
|     z__1.r = wx->r + wy->r, z__1.i = wx->i + wy->i;
 | |
|     b[i__1].r = z__1.r, b[i__1].i = z__1.i;
 | |
|     i__1 = a_dim1 * 3 + 1;
 | |
|     i__2 = a_dim1 + 1;
 | |
|     z__2.r = wx->r * a[i__2].r - wx->i * a[i__2].i, z__2.i = wx->r * a[i__2]
 | |
| 	    .i + wx->i * a[i__2].r;
 | |
|     i__3 = a_dim1 * 3 + 3;
 | |
|     z__3.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__3.i = wy->r * a[i__3]
 | |
| 	    .i + wy->i * a[i__3].r;
 | |
|     z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
 | |
|     a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
|     i__1 = a_dim1 * 3 + 2;
 | |
|     z__3.r = -wx->r, z__3.i = -wx->i;
 | |
|     i__2 = (a_dim1 << 1) + 2;
 | |
|     z__2.r = z__3.r * a[i__2].r - z__3.i * a[i__2].i, z__2.i = z__3.r * a[
 | |
| 	    i__2].i + z__3.i * a[i__2].r;
 | |
|     i__3 = a_dim1 * 3 + 3;
 | |
|     z__4.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__4.i = wy->r * a[i__3]
 | |
| 	    .i + wy->i * a[i__3].r;
 | |
|     z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
 | |
|     a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
|     i__1 = (a_dim1 << 2) + 1;
 | |
|     i__2 = a_dim1 + 1;
 | |
|     z__2.r = wx->r * a[i__2].r - wx->i * a[i__2].i, z__2.i = wx->r * a[i__2]
 | |
| 	    .i + wx->i * a[i__2].r;
 | |
|     i__3 = (a_dim1 << 2) + 4;
 | |
|     z__3.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__3.i = wy->r * a[i__3]
 | |
| 	    .i + wy->i * a[i__3].r;
 | |
|     z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
|     a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
|     i__1 = (a_dim1 << 2) + 2;
 | |
|     i__2 = (a_dim1 << 1) + 2;
 | |
|     z__2.r = wx->r * a[i__2].r - wx->i * a[i__2].i, z__2.i = wx->r * a[i__2]
 | |
| 	    .i + wx->i * a[i__2].r;
 | |
|     i__3 = (a_dim1 << 2) + 4;
 | |
|     z__3.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__3.i = wy->r * a[i__3]
 | |
| 	    .i + wy->i * a[i__3].r;
 | |
|     z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
|     a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
|     i__1 = a_dim1 * 5 + 1;
 | |
|     z__3.r = -wx->r, z__3.i = -wx->i;
 | |
|     i__2 = a_dim1 + 1;
 | |
|     z__2.r = z__3.r * a[i__2].r - z__3.i * a[i__2].i, z__2.i = z__3.r * a[
 | |
| 	    i__2].i + z__3.i * a[i__2].r;
 | |
|     i__3 = a_dim1 * 5 + 5;
 | |
|     z__4.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__4.i = wy->r * a[i__3]
 | |
| 	    .i + wy->i * a[i__3].r;
 | |
|     z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
 | |
|     a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
|     i__1 = a_dim1 * 5 + 2;
 | |
|     i__2 = (a_dim1 << 1) + 2;
 | |
|     z__2.r = wx->r * a[i__2].r - wx->i * a[i__2].i, z__2.i = wx->r * a[i__2]
 | |
| 	    .i + wx->i * a[i__2].r;
 | |
|     i__3 = a_dim1 * 5 + 5;
 | |
|     z__3.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__3.i = wy->r * a[i__3]
 | |
| 	    .i + wy->i * a[i__3].r;
 | |
|     z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
 | |
|     a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
| 
 | |
| /*     Compute condition numbers */
 | |
| 
 | |
|     s[1] = 1. / sqrt((z_abs(wy) * 3. * z_abs(wy) + 1.) / (z_abs(&a[a_dim1 + 1]
 | |
| 	    ) * z_abs(&a[a_dim1 + 1]) + 1.));
 | |
|     s[2] = 1. / sqrt((z_abs(wy) * 3. * z_abs(wy) + 1.) / (z_abs(&a[(a_dim1 << 
 | |
| 	    1) + 2]) * z_abs(&a[(a_dim1 << 1) + 2]) + 1.));
 | |
|     s[3] = 1. / sqrt((z_abs(wx) * 2. * z_abs(wx) + 1.) / (z_abs(&a[a_dim1 * 3 
 | |
| 	    + 3]) * z_abs(&a[a_dim1 * 3 + 3]) + 1.));
 | |
|     s[4] = 1. / sqrt((z_abs(wx) * 2. * z_abs(wx) + 1.) / (z_abs(&a[(a_dim1 << 
 | |
| 	    2) + 4]) * z_abs(&a[(a_dim1 << 2) + 4]) + 1.));
 | |
|     s[5] = 1. / sqrt((z_abs(wx) * 2. * z_abs(wx) + 1.) / (z_abs(&a[a_dim1 * 5 
 | |
| 	    + 5]) * z_abs(&a[a_dim1 * 5 + 5]) + 1.));
 | |
| 
 | |
|     zlakf2_(&c__1, &c__4, &a[a_offset], lda, &a[(a_dim1 << 1) + 2], &b[
 | |
| 	    b_offset], &b[(b_dim1 << 1) + 2], z__, &c__8);
 | |
|     zgesvd_("N", "N", &c__8, &c__8, z__, &c__8, rwork, work, &c__1, &work[1], 
 | |
| 	    &c__1, &work[2], &c__24, &rwork[8], &info);
 | |
|     dif[1] = rwork[7];
 | |
| 
 | |
|     zlakf2_(&c__4, &c__1, &a[a_offset], lda, &a[a_dim1 * 5 + 5], &b[b_offset],
 | |
| 	     &b[b_dim1 * 5 + 5], z__, &c__8);
 | |
|     zgesvd_("N", "N", &c__8, &c__8, z__, &c__8, rwork, work, &c__1, &work[1], 
 | |
| 	    &c__1, &work[2], &c__24, &rwork[8], &info);
 | |
|     dif[5] = rwork[7];
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZLATM6 */
 | |
| 
 | |
| } /* zlatm6_ */
 | |
| 
 |